80,109 research outputs found
Model-based objects recognition in man-made environments
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradig
DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car
We present DeepPicar, a low-cost deep neural network based autonomous car
platform. DeepPicar is a small scale replication of a real self-driving car
called DAVE-2 by NVIDIA. DAVE-2 uses a deep convolutional neural network (CNN),
which takes images from a front-facing camera as input and produces car
steering angles as output. DeepPicar uses the same network architecture---9
layers, 27 million connections and 250K parameters---and can drive itself in
real-time using a web camera and a Raspberry Pi 3 quad-core platform. Using
DeepPicar, we analyze the Pi 3's computing capabilities to support end-to-end
deep learning based real-time control of autonomous vehicles. We also
systematically compare other contemporary embedded computing platforms using
the DeepPicar's CNN-based real-time control workload. We find that all tested
platforms, including the Pi 3, are capable of supporting the CNN-based
real-time control, from 20 Hz up to 100 Hz, depending on hardware platform.
However, we find that shared resource contention remains an important issue
that must be considered in applying CNN models on shared memory based embedded
computing platforms; we observe up to 11.6X execution time increase in the CNN
based control loop due to shared resource contention. To protect the CNN
workload, we also evaluate state-of-the-art cache partitioning and memory
bandwidth throttling techniques on the Pi 3. We find that cache partitioning is
ineffective, while memory bandwidth throttling is an effective solution.Comment: To be published as a conference paper at RTCSA 201
Real-time on-board obstacle avoidance for UAVs based on embedded stereo vision
In order to improve usability and safety, modern unmanned aerial vehicles
(UAVs) are equipped with sensors to monitor the environment, such as
laser-scanners and cameras. One important aspect in this monitoring process is
to detect obstacles in the flight path in order to avoid collisions. Since a
large number of consumer UAVs suffer from tight weight and power constraints,
our work focuses on obstacle avoidance based on a lightweight stereo camera
setup. We use disparity maps, which are computed from the camera images, to
locate obstacles and to automatically steer the UAV around them. For disparity
map computation we optimize the well-known semi-global matching (SGM) approach
for the deployment on an embedded FPGA. The disparity maps are then converted
into simpler representations, the so called U-/V-Maps, which are used for
obstacle detection. Obstacle avoidance is based on a reactive approach which
finds the shortest path around the obstacles as soon as they have a critical
distance to the UAV. One of the fundamental goals of our work was the reduction
of development costs by closing the gap between application development and
hardware optimization. Hence, we aimed at using high-level synthesis (HLS) for
porting our algorithms, which are written in C/C++, to the embedded FPGA. We
evaluated our implementation of the disparity estimation on the KITTI Stereo
2015 benchmark. The integrity of the overall realtime reactive obstacle
avoidance algorithm has been evaluated by using Hardware-in-the-Loop testing in
conjunction with two flight simulators.Comment: Accepted in the International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Scienc
Improving construction materials management practices in construction sites
Construction Materials Management is a vital function for improving productivity in construction projects. Poor materials management can often affect the overall construction time, quality and budget. Currently, the construction material management practice in Somalia is believed to be poorly performed. Lack of standardized construction materials management system is one of the key issues facing by the building industry in Mogadishu-Somalia. The aim of this study was to investigate the current practices of material management at construction sites in Mogadishu-Somalia. A questionnaire survey study design was used to explore construction materials management practices. Fifty questionnaires were distributed to project managers, project engineers, site engineers, engineer, and foreman, and they were received and analysed. The following data analysis techniques were used: descriptive statistics were conducted to report sample characteristics, reliability and validity analyses were performed to confirm robustness of the instrument, graphical presentation such as bar charts were developed, and finally Average Mean Index Scale were constructed. The study results reveals that, 46.7% of respondent’s organization obtain materials for sites without site requisition by site engineer provisions, while 28.9% of respondent’s organization procure materials for sites with site requisition by project manager provisions and 13.3% of respondent’s organization procure materials for site by engineer. The results indicated that currently there is no standardized and computerized construction materials management system applied in Somalia. The researcher concluded that all contracting companies are interested in using some techniques of managing construction materials such as creating and updating database for materials categories from local and international suppliers. Finally, researcher recommends to use computerized construction materials management systems to reduce effort and time, and to achieve more accurate results
Pushbroom Stereo for High-Speed Navigation in Cluttered Environments
We present a novel stereo vision algorithm that is capable of obstacle
detection on a mobile-CPU processor at 120 frames per second. Our system
performs a subset of standard block-matching stereo processing, searching only
for obstacles at a single depth. By using an onboard IMU and state-estimator,
we can recover the position of obstacles at all other depths, building and
updating a full depth-map at framerate.
Here, we describe both the algorithm and our implementation on a high-speed,
small UAV, flying at over 20 MPH (9 m/s) close to obstacles. The system
requires no external sensing or computation and is, to the best of our
knowledge, the first high-framerate stereo detection system running onboard a
small UAV
Autonomous real-time surveillance system with distributed IP cameras
An autonomous Internet Protocol (IP) camera based object tracking and behaviour identification system, capable of running in real-time on an embedded system with limited memory and processing power is presented in this paper. The main contribution of this work is the integration of processor intensive image processing algorithms on an embedded platform capable of running at real-time for monitoring the behaviour of pedestrians. The Algorithm Based Object Recognition and Tracking (ABORAT) system architecture presented here was developed on an Intel PXA270-based development board clocked at 520 MHz. The platform was connected to a commercial stationary IP-based camera in a remote monitoring station for intelligent image
processing. The system is capable of detecting moving objects and their shadows in a complex environment with varying lighting intensity and moving foliage. Objects
moving close to each other are also detected to extract their trajectories which are then fed into an unsupervised neural network for autonomous classification. The novel intelligent video system presented is also capable of performing simple analytic functions such as tracking and generating alerts when objects enter/leave regions or cross tripwires superimposed on live video by the operator
- …
