6 research outputs found

    A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology

    Get PDF
    We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as ‘small target motion detectors’ (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1st order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear ‘matched filter’ to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues

    Distributed Dendritic Processing Facilitates Object Detection: A Computational Analysis on the Visual System of the Fly

    Get PDF
    Hennig P, Möller R, Egelhaaf M. Distributed Dendritic Processing Facilitates Object Detection: A Computational Analysis on the Visual System of the Fly. PLoS ONE. 2008;3(8): e3092.Background: Detecting objects is an important task when moving through a natural environment. Flies, for example, may land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and, in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and inhibitory inputs is not understood. Methodology/Principal Findings: We use model simulations to analyse the neuronal computations responsible for the preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit, but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input resistance in the inhibited neurons during visual stimulation. Conclusions/Significance: Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an alternative explanation of perceptual phenomena currently explained by lateral inhibition networks

    A neurobiological and computational analysis of target discrimination in visual clutter by the insect visual system.

    Get PDF
    Some insects have the capability to detect and track small moving objects, often against cluttered moving backgrounds. Determining how this task is performed is an intriguing challenge, both from a physiological and computational perspective. Previous research has characterized higher-order neurons within the fly brain known as 'small target motion detectors‘ (STMD) that respond selectively to targets, even within complex moving surrounds. Interestingly, these cells still respond robustly when the velocity of the target is matched to the velocity of the background (i.e. with no relative motion cues). We performed intracellular recordings from intermediate-order neurons in the fly visual system (the medulla). These full-wave rectifying, transient cells (RTC) reveal independent adaptation to luminance changes of opposite signs (suggesting separate 'on‘ and 'off‘ channels) and fast adaptive temporal mechanisms (as seen in some previously described cell types). We show, via electrophysiological experiments, that the RTC is temporally responsive to rapidly changing stimuli and is well suited to serving an important function in a proposed target-detecting pathway. To model this target discrimination, we use high dynamic range (HDR) natural images to represent 'real-world‘ luminance values that serve as inputs to a biomimetic representation of photoreceptor processing. Adaptive spatiotemporal high-pass filtering (1st-order interneurons) shapes the transient 'edge-like‘ responses, useful for feature discrimination. Following this, a model for the RTC implements a nonlinear facilitation between the rapidly adapting, and independent polarity contrast channels, each with centre-surround antagonism. The recombination of the channels results in increased discrimination of small targets, of approximately the size of a single pixel, without the need for relative motion cues. This method of feature discrimination contrasts with traditional target and background motion-field computations. We show that our RTC-based target detection model is well matched to properties described for the higher-order STMD neurons, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear 'matched filter‘ to successfully detect many targets from the background. The model produces robust target discrimination across a biologically plausible range of target sizes and a range of velocities. We show that the model for small target motion detection is highly correlated to the velocity of the stimulus but not other background statistics, such as local brightness or local contrast, which normally influence target detection tasks. From an engineering perspective, we examine model elaborations for improved target discrimination via inhibitory interactions from correlation-type motion detectors, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observe that a changing optimal threshold is highly correlated to the value of observer ego-motion. We present an elaborated target detection model that allows for implementation of a static optimal threshold, by scaling the target discrimination mechanism with a model-derived velocity estimation of ego-motion. Finally, we investigate the physiological relevance of this target discrimination model. We show that via very subtle image manipulation of the visual stimulus, our model accurately predicts dramatic changes in observed electrophysiological responses from STMD neurons.Thesis (Ph.D.) - University of Adelaide, School of Molecular and Biomedical Science, 200

    Chasing control in male blowflies : behavioural performance and neuronal responses

    Get PDF
    Trischler C. Chasing control in male blowflies : behavioural performance and neuronal responses. Bielefeld (Germany): Bielefeld University; 2008

    Towards a Dynamic Vision System - Computational Modelling of Insect Motion Sensitive Neural Systems

    Get PDF
    For motion perception, vision plays an irreplaceable role, which can extract more abundant useful movement features from an unpredictable dynamic environment compared to other sensing modalities. Nowadays, building a dynamic vision system for motion perception in a both reliable and efficient manner is still an open challenge. Millions of years of evolutionary development has provided, in nature, animals that possess robust vision systems capable of motion perception to deal with a variety of aspects of life. Insects, in particular, have a relatively smaller number of visual neurons compared to vertebrates and humans, but can still navigate smartly through visually cluttered and dynamic environments. Understanding the insects' visual processing pathways and methods thus are not only attractive to neural system modellers but also critical in providing effective solutions for future intelligent machines. Originated from biological researches in insect visual systems, this thesis investigates computational modelling of motion sensitive neural systems and potential applications to robotics. This proposes novel modelling of the locust and fly visual systems for sensing looming and translating stimuli. Specifically, the proposed models comprise collision selective neural networks of two lobula giant movement detectors (LGMD1 and LGMD2) in locusts, and translating sensitive neural networks of direction selective neurons (DSNs) in flies, as well as hybrid visual neural systems of their combinations. In all these proposed models, the functionality of ON and OFF pathways is highlighted, which separate visual processing into parallel computation. This works effectively to realise neural characteristics of both the LGMD1 and the LGMD2 in locusts and plays crucial roles in separating the different looming selectivity between the two visual neurons. Such a biologically plausible structure can also implement the fly DSNs for translational movements perception and guide fast motion tracking with a behavioural response to visual fixation. The effectiveness and flexibility of the proposed motion sensitive neural systems have been validated by systematic and comparative experiments ranging from off-line synthetic and real-world tests to on-line bio-robotic tests. The underlying characteristics and functionality of the locust LGMDs and the fly DSNs have been achieved by the proposed models. All the proposed visual models have been successfully realised on the embedded system in a vision-based ground mobile robot. The robot tests have verified the computational simplicity and efficiency of proposed bio-inspired methodologies, which hit at great potential of building neuromorphic sensors in autonomous machines for motion perception in a fast, reliable and low-energy manner

    Life-like Image Processing for Small Target Motion Detection in Cluttered Dynamic Environments

    Get PDF
    Discriminating targets moving against a cluttered background is a huge challenge for future robotic vision systems, let alone detecting a target as small as one or a few pixels. As a source of inspiration, insects are quite apt at searching for mates and tracking prey – which always appear as small dim speckles in the visual field. The exquisite sensitivity of insects for small target motion, as revealed recently, is coming from a class of specific neurons called small target motion detectors (STMDs). Some of the STMDs have also demonstrated direction selectivity which means these STMDs respond strongly only to their preferred motion direction. Build a quantitative STMD model is the first step for not only further understanding of the biological visual system, but also providing robust and economic solutions of small target detection for an artificial visual system. This research aims to explore STMD-based image processing methods for small target motion detection against cluttered dynamic backgrounds. The major contributions are summarized as follows. Three STMD-based neural models are proposed in this research named as directionally selective STMD(DSTMD), STMD Plus and Feedback STMD, respectively. The DSTMD systematically models and studies direction selectivity of the STMD neurons, meanwhile provides with unified and rigorous mathematical description. Specifically, in the DSTMD, a new correlation mechanism is introduced for direction selectivity via correlating signals relayed from two pixels. Then, a lateral inhibition mechanism is implemented on the spatial field for size selectivity of the STMD neurons. Finally, a population vector algorithm is used to encode motion direction of small targets. Extensive experiments showed that the proposed DSTMD not only is in accord with current biological findings, i.e. showing directional preferences, but also works reliably in detecting small targets against cluttered backgrounds. The STMD Plus is developed to discriminate small targets from small-target-like background features (named as fake features) by integrating motion information with directional contrast. More precisely, the STMD Plus is composed of four subsystems – ommatidia, motion pathway, contrast pathway and mushroom body. Compared to existing STMD-based models, the additional contrast pathway extracts directional contrast from luminance signals to eliminate false positive background motion. The directional contrast and the extracted motion information by the motion pathway are integrated in the mushroom body for small target discrimination. The experimental results demonstrated the significant and consistent improvements of the proposed visual system model over existing STMD-based models against fake features. The Feedback STMD is also designed to filter out fake features by introducing a new feedback mechanism. Specifically, the model output is first temporally delayed then applied to the previous neural layer to construct a feedback loop. By subtracting the feedback signal from the inputs of the STMDs, the background fake features are largely suppressed. Experimental results show that the developed feedback neural model achieves better performance than the existing STMD-based models in discriminating small targets from complex backgrounds
    corecore