5 research outputs found

    Anomaly detection in spatiotemporal data via regularized non-negative tensor analysis

    Get PDF
    Anomaly detection in multidimensional data is a challenging task. Detecting anomalous mobility patterns in a city needs to take spatial, temporal, and traffic information into consideration. Although existing techniques are able to extract spatiotemporal features for anomaly analysis, few systematic analysis about how different factors contribute to or affect the anomalous patterns has been proposed. In this paper, we propose a novel technique to localize spatiotemporal anomalous events based on tensor decomposition. The proposed method employs a spatial-feature-temporal tensor model and analyzes latent mobility patterns through unsupervised learning. We first train the model based on historical data and then use the model to capture the anomalies, i.e., the mobility patterns that are significantly different from the normal patterns. The proposed technique is evaluated based on the yellow-cab dataset collected from New York City. The results show several interesting latent mobility patterns and traffic anomalies that can be deemed as anomalous events in the city, suggesting the effectiveness of the proposed anomaly detection method

    Modeling, Predicting and Capturing Human Mobility

    Get PDF
    Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility

    An eigenvector-based hotspot detection

    Get PDF
    Space and time are two critical components of many real world systems. For thisreason, analysis of anomalies in spatiotemporal data has been a great of interest.In this work, application of tensor decomposition and eigenspace techniques on spa-tiotemporal hotspot detection is investigated. An algorithm called SST-Hotspot isproposed which accounts for spatiotemporal variations in data and detect hotspotsusing matching of eigenvector elements of two cases and population tensors. Theexperimental results reveal the interesting application of tensor decomposition andeigenvector-based techniques in hotspot analysis
    corecore