7,755 research outputs found

    Scalable Bayesian model averaging through local information propagation

    Full text link
    We show that a probabilistic version of the classical forward-stepwise variable inclusion procedure can serve as a general data-augmentation scheme for model space distributions in (generalized) linear models. This latent variable representation takes the form of a Markov process, thereby allowing information propagation algorithms to be applied for sampling from model space posteriors. In particular, we propose a sequential Monte Carlo method for achieving effective unbiased Bayesian model averaging in high-dimensional problems, utilizing proposal distributions constructed using local information propagation. We illustrate our method---called LIPS for local information propagation based sampling---through real and simulated examples with dimensionality ranging from 15 to 1,000, and compare its performance in estimating posterior inclusion probabilities and in out-of-sample prediction to those of several other methods---namely, MCMC, BAS, iBMA, and LASSO. In addition, we show that the latent variable representation can also serve as a modeling tool for specifying model space priors that account for knowledge regarding model complexity and conditional inclusion relationships

    Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models

    Full text link
    Structured additive regression provides a general framework for complex Gaussian and non-Gaussian regression models, with predictors comprising arbitrary combinations of nonlinear functions and surfaces, spatial effects, varying coefficients, random effects and further regression terms. The large flexibility of structured additive regression makes function selection a challenging and important task, aiming at (1) selecting the relevant covariates, (2) choosing an appropriate and parsimonious representation of the impact of covariates on the predictor and (3) determining the required interactions. We propose a spike-and-slab prior structure for function selection that allows to include or exclude single coefficients as well as blocks of coefficients representing specific model terms. A novel multiplicative parameter expansion is required to obtain good mixing and convergence properties in a Markov chain Monte Carlo simulation approach and is shown to induce desirable shrinkage properties. In simulation studies and with (real) benchmark classification data, we investigate sensitivity to hyperparameter settings and compare performance to competitors. The flexibility and applicability of our approach are demonstrated in an additive piecewise exponential model with time-varying effects for right-censored survival times of intensive care patients with sepsis. Geoadditive and additive mixed logit model applications are discussed in an extensive appendix

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models

    Get PDF
    This article introduces two absolutely continuous global-local shrinkage priors to enable stochastic variable selection in the context of high-dimensional matrix exponential spatial specifications. Existing approaches as a means to dealing with overparameterization problems in spatial autoregressive specifications typically rely on computationally demanding Bayesian model-averaging techniques. The proposed shrinkage priors can be implemented using Markov chain Monte Carlo methods in a flexible and efficient way. A simulation study is conducted to evaluate the performance of each of the shrinkage priors. Results suggest that they perform particularly well in high-dimensional environments, especially when the number of parameters to estimate exceeds the number of observations. For an empirical illustration we use pan-European regional economic growth data.Comment: Keywords: Matrix exponential spatial specification, model selection, shrinkage priors, hierarchical modeling; JEL: C11, C21, C5
    • …
    corecore