2 research outputs found

    An efficient musical accompaniment parallel system for mobile devices

    Full text link
    [EN] This work presents a software system designed to track the reproduction of a musical piece with the aim to match the score position into its symbolic representation on a digital sheet. Into this system, known as automated musical accompaniment system, the process of score alignment can be carried out real-time. A real-time score alignment, also known as score following, poses an important challenge due to the large amount of computation needed to process each digital frame and the very small time slot to process it. Moreover, the challenge is even greater since we are interested on handheld devices, i.e. devices characterized by both low power consumption and mobility. The results presented here show that it is possible to exploit efficiently several cores of an ARM(A (R)) processor, or a GPU accelerator (presented in some SoCs from NVIDIA) reducing the processing time per frame under 10 ms in most of the cases.This work was supported by the Ministry of Economy and Competitiveness from Spain (FEDER) under projects TEC2015-67387-C4-1-R, TEC2015-67387-C4-2-R and TEC2015-67387-C4-3-R, the Andalusian Business, Science and Innovation Council under project P2010-TIC-6762 (FEDER), and the Generalitat Valenciana PROMETEOII/2014/003Alonso-Jordá, P.; Vera-Candeas, P.; Cortina, R.; Ranilla, J. (2017). An efficient musical accompaniment parallel system for mobile devices. The Journal of Supercomputing. 73(1):343-353. https://doi.org/10.1007/s11227-016-1865-xS343353731Cont A, Schwarz D, Schnell N, Raphael C (2007) Evaluation of real- time audio-to-score alignment. In: Proc. of the International Conference on Music Information Retrieval (ISMIR) 2007, ViennaArzt A (2008) Score following with dynamic time warping. An automatic page-turner. Master’s Thesis, Vienna University of Technology, ViennaRaphael C (2010) Music plus one and machine learning. In: Proc. of the 27 th International Conference on Machine Learning, Haifa, pp 21–28Carabias-Ortí JJ, Rodríguez-Serrano FJ, Vera-Candeas P, Ruiz-Reyes N, Cañadas-Quesada FJ (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: Proc. of the International Conference on Music Information Retrieval (ISMIR), Málaga, pp 742–748Cont A (2010) A coupled duration-focused architecture for real-time music-to-score alignment. IEEE Trans. Pattern Anal. Mach. Intell. 32(6):974–987Montecchio N, Orio N (2009) A discrete filterbank approach to audio to score matching for score following. In: Proc. of the International Conference on Music Information Retrieval (ISMIR), pp 495–500Puckette M (1995) Score following using the sung voice. In: Proc. of the International Computer Music Conference (ICMC), pp 175–178Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J. Sel. Top. Signal Process. 5(6):1205–1215Cont A (2006) Realtime audio to score alignment for polyphonic music instruments using sparse non-negative constraints and hierarchical hmms. In: Proc. of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), ToulouseCuvillier P, Cont A (2014) Coherent time modeling of Semi-Markov models with application to realtime audio-to-score alignment. In Proc. of the 2014 IEEE International Workshop on Machine Learning for Signal Processing, p 16Joder C, Essid S, Richard G (2013) Learning optimal features for polyphonic audio-to-score alignment. IEEE Trans. Audio Speech Lang. Process. 21(10):2118–2128Dixon S (2005) Live tracking of musical performances using on-line time warping. In: Proc. International Conference on Digital Audio Effects (DAFx), Madrid, pp 92–97Hu N, Dannenberg RB, Tzanetakis G (2009) Polyphonic audio matching and alignment for music retrieval. In: Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp 185–188Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proc. International Computer Music Conference (ICMC)Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-Gonzalez M, Ranilla J (2016) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J. Supercomput. doi: 10.1007/s11227-016-1647-5 (published online)Carabias-Ortí JJ, Rodríguez-Serrano FJ, Vera-Candeas P, Cañadas-Quesada FJ, Ruiz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for realtime music transcription, Eng. Appl. Artif. Intell. 26(7):1671–1680Carabias-Ortí JJ, Rodríguez-Serrano FJ, Vera-Candeas P, Martínez-Muñoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans. Intell. Syst. Technol. (accepted)FFTW (2016) http://www.fftw.org . Accessed July 2016NVIDIA CUDA Fast Fourier Transform library (cuFFT) (2016) http://developer.nvidia.com/cufft . Accessed July 2016The OpenMP API specification for parallel programming (2016) http://openmp.org . Accessed July 201

    HReMAS: Hybrid Real-time Musical Alignment System

    Get PDF
    [EN] This paper presents a real-time audio-to-score alignment system for musical applications. The aim of these systems is to synchronize a live musical performance with its symbolic representation in a music sheet. We have used as a base our previous real-time alignment system by enhancing it with a traceback stage, a stage used in offline alignment to improve the accuracy of the aligned note. This stage introduces some delay, what forces to assume a trade-off between output delay and alignment accuracy that must be considered in the design of this type of hybrid techniques. We have also improved our former system to execute faster in order to minimize this delay. Other interesting improvements, like identification of silence frames, have also been incorporated to our proposed system.This work has been supported by the "Ministerio de Economia y Competitividad" of Spain and FEDER under Projects TEC2015-67387-C4-{1,2,3}-R.Cabañas-Molero, P.; Cortina-Parajón, R.; Combarro, EF.; Alonso-Jordá, P.; Bris-Peñalver, FJ. (2019). HReMAS: Hybrid Real-time Musical Alignment System. The Journal of Supercomputing. 75(3):1001-1013. https://doi.org/10.1007/s11227-018-2265-1S10011013753Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-González M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73(1):126–138Alonso P, Vera-Candeas P, Cortina R, Ranilla J (2017) An efficient musical accompaniment parallel system for mobile devices. J Supercomput 73(1):343–353Arzt A (2016) Flexible and robust music tracking. Ph.D. thesis, Johannes Kepler University Linz, Linz, ÖsterreichArzt A, Widmer G, Dixon S (2008) Automatic page turning for musicians via real-time machine listening. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI), Amsterdam, pp 241–245Carabias-Orti J, Rodríguez-Serrano F, Vera-Candeas P, Ruiz-Reyes N, Cañadas-Quesada F (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: Proceedings of ISMIR, pp 742–748Cont A (2006) Realtime audio to score alignment for polyphonic music instruments, using sparse non-negative constraints and hierarchical HMMs. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol 5. pp V–VCont A, Schwarz D, Schnell N, Raphael C (2007) Evaluation of real-time audio-to-score alignment. In: International Symposium on Music Information Retrieval (ISMIR), ViennaDannenberg RB, Raphael C (2006) Music score alignment and computer accompaniment. Commun ACM 49(8):38–43Devaney J, Ellis D (2009) Handling asynchrony in audio-score alignment. In: Proceedings of the International Computer Music Conference Computer Music Association. pp 29–32Dixon S (2005) An on-line time warping algorithm for tracking musical performances. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). pp 1727–1728Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Top Signal Process 5(6):1205–1215Ewert S, Muller M, Grosche P (2009) High resolution audio synchronization using chroma onset features. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009 (ICASSP 2009). pp 1869–1872Hu N, Dannenberg R, Tzanetakis G (2003) Polyphonic audio matching and alignment for music retrieval. In: 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. pp 185–188Kaprykowsky H, Rodet X (2006) Globally optimal short-time dynamic time warping, application to score to audio alignment. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol 5. pp. V–VLi B, Duan Z (2016) An approach to score following for piano performances with the sustained effect. IEEE/ACM Trans Audio Speech Lang Process 24(12):2425–2438Miron M, Carabias-Orti JJ, Bosch JJ, Gómez E, Janer J (2016) Score-informed source separation for multichannel orchestral recordings. J Electr Comput Eng 2016(8363507):1–19Muñoz-Montoro A, Cabañas-Molero P, Bris-Peñalver F, Combarro E, Cortina R, Alonso P (2017) Discovering the composition of audio files by audio-to-midi alignment. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. pp 1522–1529Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proceedings of the International Computer Music Conference (ICMC), pp 155–158Pätynen J, Pulkki V, Lokki T (2008) Anechoic recording system for symphony orchestra. Acta Acust United Acust 94(6):856–865Raphael C (2010) Music plus one and machine learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp 21–28Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans Intell Syst Technol 8(2):22:1–22:2
    corecore