291 research outputs found

    A PatchMatch-based Dense-field Algorithm for Video Copy-Move Detection and Localization

    Full text link
    We propose a new algorithm for the reliable detection and localization of video copy-move forgeries. Discovering well crafted video copy-moves may be very difficult, especially when some uniform background is copied to occlude foreground objects. To reliably detect both additive and occlusive copy-moves we use a dense-field approach, with invariant features that guarantee robustness to several post-processing operations. To limit complexity, a suitable video-oriented version of PatchMatch is used, with a multiresolution search strategy, and a focus on volumes of interest. Performance assessment relies on a new dataset, designed ad hoc, with realistic copy-moves and a wide variety of challenging situations. Experimental results show the proposed method to detect and localize video copy-moves with good accuracy even in adverse conditions

    Detection of Region Duplication in Digital Images:A Digital Forensic Approach

    Get PDF
    Digital images are easy to manipulate and forge due to availability of powerful image processing and editing software. Region duplication is becoming more and more popular in image manipulation where part of an image is pasted to another location to conceal undesirable objects or sometimes to hide some useful information. This thesis presents a detailed study and evaluation of one specific type of digital image forgery detection, known as the copy-move forgery detection. Over the past decade considerable number of technologies and solutions that have been proposed for detection of copy-move forgeries. We will be looking about different techniques - on the basis of time complexity, false positives and false negatives - for the detection of this type of forgery. Firstly, detecting the forgery using different techniques – Auto-correlation, Exact Block matching and exhaustive search – and then comparing these techniques on the basis of different parameters. Some results are very promising and can contribute to ongoing work in this fiel

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Rotation Invariant on Harris Interest Points for Exposing Image Region Duplication Forgery

    Get PDF
    Nowadays, image forgery has become common because only an editing package software and a digital camera are required to counterfeit an image. Various fraud detection systems have been developed in accordance with the requirements of numerous applications and to address different types of image forgery. However, image fraud detection is a complicated process given that is necessary to identify the image processing tools used to counterfeit an image. Here, we describe recent developments in image fraud detection. Conventional techniques for detecting duplication forgeries have difficulty in detecting postprocessing falsification, such as grading and joint photographic expert group compression. This study proposes an algorithm that detects image falsification on the basis of Hessian features

    A Forensic Scheme for Revealing Post-processed Region Duplication Forgery in Suspected Images

    Get PDF
    Recent researches have demonstrated that local interest points alone can be employed to detect region duplication forgery in image forensics. Authentic images may be abused by copy-move tool in Adobe Photoshop to fully contained duplicated regions such as objects with high primitives such as corners and edges. Corners and edges represent the internal structure of an object in the image which makes them have a discriminating property under geometric transformations such as scale and rotation operation. They can be localised using scale-invariant features transform (SIFT) algorithm. In this paper, we provide an image forgery detection technique by using local interest points. Local interest points can be exposed by extracting adaptive non-maximal suppression (ANMS) keypoints from dividing blocks in the segmented image to detect such corners of objects. We also demonstrate that ANMS keypoints can be effectively utilised to detect blurred and scaled forged regions. The ANMS features of the image are shown to exhibit the internal structure of copy moved region. We provide a new texture descriptor called local phase quantisation (LPQ) that is robust to image blurring and also to eliminate the false positives of duplicated regions. Experimental results show that our scheme has the ability to reveal region duplication forgeries under scaling, rotation and blur manipulation of JPEG images on MICC-F220 and CASIA v2 image datasets

    Video Forgery Detection: A Comprehensive Study of Inter and Intra Frame Forgery With Comparison of State-Of-Art

    Get PDF
    Availability of sophisticated and low-cost smart phones, digital cameras, camcorders, surveillance CCTV cameras are extensively used to create videos in our daily life. The prevalence of video sharing techniques presently available in the market are: YouTube, Facebook, Instagram, snapchat and many more are in utilization to share the information related to videos. Besides this, there are many software which can edit the content of video: Window Movie Maker, Video Editor, Adobe Photoshop etc., with this available software anyone can edit the video content which is called as “Forgery” if edited content is harmful. Usually, videos play a vital role in terms of proof in crime scene. The Victim is judged by the proof submitted by the lawyer to the court. Many such cases have evidenced that the video being submitted as proof is been forged. Checking the authentication of the video is most important before submitting as proof. There has been a rapid development in deep learning techniques which have created deepfake videos where faces are replaced with other faces which strongly made a belief of saying “Seeing is no longer believing”. The available software which can morph the faces are FakeApp, FaceSwap etc., the increased technology really made the Authentication of proofs very doubtful and un-trusty which are not accepted as proof without proper validation of the video. The survey gives the methods that are capable of accurately computing the videos and analyses to detect different kinds of forgeries. It has revealed that most of the existing methods are relying on number of tampered frames. The proposed techniques are with compression, double compression codec videos where research is being carried out from 2016 to present. This paper gives the comprehensive study of techniques, algorithms and applications designed and developed to detect forgery in videos
    corecore