43,020 research outputs found

    A massively parallel multi-level approach to a domain decomposition method for the optical flow estimation with varying illumination

    Get PDF
    We consider a variational method to solve the optical flow problem with varying illumination. We apply an adaptive control of the regularization parameter which allows us to preserve the edges and fine features of the computed flow. To reduce the complexity of the estimation for high resolution images and the time of computations, we implement a multi-level parallel approach based on the domain decomposition with the Schwarz overlapping method. The second level of parallelism uses the massively parallel solver MUMPS. We perform some numerical simulations to show the efficiency of our approach and to validate it on classical and real-world image sequences

    A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging

    Full text link
    Conventional LIDAR systems require hundreds or thousands of photon detections to form accurate depth and reflectivity images. Recent photon-efficient computational imaging methods are remarkably effective with only 1.0 to 3.0 detected photons per pixel, but they are not demonstrated at signal-to-background ratio (SBR) below 1.0 because their imaging accuracies degrade significantly in the presence of high background noise. We introduce a new approach to depth and reflectivity estimation that focuses on unmixing contributions from signal and noise sources. At each pixel in an image, short-duration range gates are adaptively determined and applied to remove detections likely to be due to noise. For pixels with too few detections to perform this censoring accurately, we borrow data from neighboring pixels to improve depth estimates, where the neighborhood formation is also adaptive to scene content. Algorithm performance is demonstrated on experimental data at varying levels of noise. Results show improved performance of both reflectivity and depth estimates over state-of-the-art methods, especially at low signal-to-background ratios. In particular, accurate imaging is demonstrated with SBR as low as 0.04. This validation of a photon-efficient, noise-tolerant method demonstrates the viability of rapid, long-range, and low-power LIDAR imaging

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Automatic facial analysis for objective assessment of facial paralysis

    Get PDF
    Facial Paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann Scale. Experiments show the Radial Basis Function (RBF) Neural Network to have superior performance

    WxBS: Wide Baseline Stereo Generalizations

    Full text link
    We have presented a new problem -- the wide multiple baseline stereo (WxBS) -- which considers matching of images that simultaneously differ in more than one image acquisition factor such as viewpoint, illumination, sensor type or where object appearance changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of matching algorithms has been introduced and will be made public. We have extensively tested a large set of popular and recent detectors and descriptors and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER and Hessian-Affine detectors works best for many different nuisance factors. We show that simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other) detectors and allows to use them on infrared and low contrast images. A novel matching algorithm for addressing the WxBS problem has been introduced. We have shown experimentally that the WxBS-M matcher dominantes the state-of-the-art methods both on both the new and existing datasets.Comment: Descriptor and detector evaluation expande

    A region based approach to background modeling in a wavelet multi-resolution framework

    Get PDF
    In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scen

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa
    • 

    corecore