5 research outputs found

    Pengembangan Metode Routing Menggunakan Mekanisme Swing Routing dengan Penanganan Routing Hole Sebagai Peningkatan Kinerja Wireless Sensor Network

    Get PDF
    WSN menggunakan jaringan nirkabel untuk menghubungkan node sensor dan sink node. Node sensor bertugas mengumpulkan informasi dengan melakukan sensing terhadap target seperti panas, cahaya, dan suhu. Namun, node sensor memiliki keterbatasan dalam hal memori, sumber daya pengolahan, energi, dan masa pakai, yang dapat mempengaruhi kinerja jaringan, termasuk network lifetime dan packet delivery ratio. Oleh karena itu, diperlukan protokol yang efektif untuk meningkatkan kinerja jaringan WSN. Salah satu penelitian untuk meningkatkan kinerja jaringan adalah menggunakan Shortest Geopath Routing (SGP) berbasis tetangga terdekat dan lokasi. Namun, SGP memiliki permasalahan seperti seringnya terjadi kongesti yang menyebabkan packet drop dan kegagalan pengiriman data saat terjadi Routing hole. Untuk mengatasi permasalahan tersebut, penelitian ini melakukan protokol SGP dengan mekanisme Swing routing untuk meningkatkan kinerja jaringan WSN. Dalam mengatasi Routing hole, Swing routing Protocol juga melakukan pencarian jalur alternatif dengan memilih node berdasarkan lokasi koordinat terdekat dengan sink node. Hasil simulasi menggunakan simulator SIDnet-SWAN menunjukkan bahwa penggunaan Swing routing Protocol dapat mengurangi warning congestion dalam jaringan sebesar rata-rata 10 node, meningkatkan network lifetime sebesar 5.27% (14 menit), dan meningkatkan packet delivery ratio sebesar 8.27% dibandingkan dengan protokol SGP. Dalam penanganan Routing hole, Swing routing Protocol mendapatkan rata-rata packet delivery ratio sebesar 21.77% dibandingkan dengan protokol SGP

    Mobile Agent-based Cross-Layer Anomaly Detection in Smart Home Sensor Networks Using Fuzzy Logic

    Get PDF
    Despite the rapid advancements in consumer electronics, the data transmitted by sensing devices in a smart home environment are still vulnerable to anomalies due to node faults, transmission errors, or attacks. This affects the reliability of the received sensed data and may lead to the incorrect decision making at both local (i.e., smart home) and global (i.e., smart city) levels. This study introduces a novel mobile agent-based cross-layer anomaly detection scheme, which takes into account stochastic variability in cross-layer data obtained from received data packets, and defines fuzzy logic-based soft boundaries to characterize behavior of sensor nodes. This cross-layer design approach empowers the proposed scheme to detect both node and link anomalies, and also effectively transmits mobile agents by considering the communication link-state before transmission of the mobile agent. The proposed scheme is implemented on a real testbed and a modular application software is developed to manage the anomaly detection system in the smart home. The experimental results show that the proposed scheme detects cross-layer anomalies with high accuracy and considerably reduces the energy consumption caused by the mobile agent transmission in the poor communication link-state situations.Griffith Sciences, Griffith School of EngineeringFull Tex

    LR3: Link Reliable Reactive Routing Protocol for Wireless Sensor Networks

    Get PDF
    Existing reliable-oriented routing protocols computes link reliability based on the packet reception ratio and neglects impact of various parameters such as noise, shadowing, battery-lifespan, uncertainty and geographic locations. In this paper, we propose a Link Reliable Reactive Routing (LR3) protocol for WSNs to accomplish reliable and resilience to out-of-order transmission and path diversity at each hop. The log-normal shadowing model is used to estimate link reliability and a back-off scheme is used to determine delay. A new cost estimated to? nd forwarding nodes on mentor path that includes link reliability, delay, status of queue at forwarding node and packet advancement at the forwarding node. LR3 is simulated using NS-2 and results show that it outperforms other reactive routing protocols in terms of packet delivery ratio, latency, link reliability and data transmission cost [1][2]

    Improvement of non-uniform node deployment mechanism for corona-based wireless sensor networks

    Get PDF
    The promising technology of Wireless Sensor Networks (WSNs), lots of applications have been developed for monitoring and tracking in military, commercial, and educational environments. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In corona-based Wireless Sensor Networks (WSNs), nodes that are positioned in coronas near the sink drain their energy faster than others as they are burdened with relaying traffic come from distant coronas forming energy holes in the network. This situation shows significant effects on the network efficiency in terms of lifetime and energy consumption. The network may stop operation prematurely even though there is much energy left unused at the distant nodes. In this thesis, non-uniform node deployments and energy provisioning strategies are proposed to mitigate energy holes problem. These strategies concerns the optimal number of sensors required in each corona in order to balance the energy consumption and to meet the coverage and connectivity requirements in the network. In order to achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption. The energy provisioning technique is proposed for harmonizing the energy consumption among coronas by computing the extra needed energy in every corona. In the proposed mechanism, the energy required in each corona for balanced energy consumption is computed by determining the initial energy in each node with respect to its corona, and according to the corona load while satisfying the network coverage and connectivity requirements. The theoretical design and modeling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The proposed technique could improve the network lifetime noticeably via fair balancing of energy consumption ratio among coronas about 9.4 times more than other work. This is confirmed by the evaluation results that have been showed that the proposed solution offers efficient energy distribution that can enhance the lifetime about 40% compared to previous research works

    A review of Energy Hole mitigating techniques in multi-hop many to one communication and its significance in IoT oriented Smart City infrastructure

    Get PDF
    A huge increase in the percentage of the world's urban population poses resource management, especially energy management challenges in smart cities. In this paper, the growing challenges of energy management in smart cities have been explored and the significance of elimination of energy holes in converge cast communication has been discussed. The impact of mitigation of energy holes on the network lifetime and energy efficiency has been thoroughly covered. The particular focus of this work has been on energy-efficient practices in two major key enablers of smart cities namely, the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). In addition, this paper presents a robust survey of state-of-the-art energy-efficient routing and clustering methods in WSNs. A niche energy efficiency issue in WSNs routing has been identified as energy holes and a detailed survey and evaluation of various techniques that mitigate the formation of energy holes and achieve balanced energy-efficient routing has been covered
    corecore