2,151 research outputs found

    A strong construction of S-box using Mandelbrot set an image encryption scheme

    Get PDF
    The substitution box (S-box) plays a vital role in creating confusion during the encryption process of digital data. The quality of encryption schemes depends upon the S-box. There have been several attempts to enhance the quality of the S-box by using fractal chaotic mechanisms. However, there is still weakness in the robustness against cryptanalysis of fractal-based S-boxes. Due to their chaotic behavior, fractals are frequently employed to achieve randomness by confusion and diffusion process. A complex number-based S-box and a chaotic map diffusion are proposed to achieve high nonlinearity and low correlation. This study proposed a Mandelbrot set S-box construction based on the complex number and Chen chaotic map for resisting cryptanalytic attacks by creating diffusion in our proposed algorithm. The cryptosystem was built on the idea of substitution permutation networks (SPN). The complex nature of the proposed S-box makes it more random than other chaotic maps. The robustness of the proposed system was analyzed by different analysis properties of the S-box, such as nonlinearity, strict avalanche criterion, Bit independent criterion, and differential and linear probability. Moreover, to check the strength of the proposed S-box against differential and brute force attacks, we performed image encryption with the proposed S-box. The security analysis was performed, including statistical attack analysis and NIST analysis. The analysis results show that the proposed system achieves high-security standards than existing schemes

    An Innovative Design of Substitution Box Using Trigonometric Transformation

    Full text link
    As the number of hacking events and cyber threats keeps going up, it is getting harder and harder to communicate securely and keep personal information safe on the Internet. Cryptography is a very important way to deal with these problems because it can secure data by changing it from one form to another. In this study, we show a new, lightweight algorithm that is based on trigonometric ideas and offers a lot of security by making it less likely that cryptanalysis will work. The performance of our suggested algorithm is better than that of older methods like the Hill cipher, Blowfish, and DES. Even though traditional methods offer good security, they may have more work to do, which slows them down. The suggested algorithm tries to close this gap by offering a solution based on trigonometric ideas that are both fast and safe. The main goal of this study is to come up with a small but strong encryption algorithm that cannot be broken by cryptanalysis and keeps Internet communication safe. We want to speed up the coding process without making it less secure by using trigonometric principles. The suggested algorithm uses trigonometric functions and operations to create non-linearity and confusion, making it resistant to both differential and linear cryptanalysis. We show that the suggested algorithm is more secure and faster than traditional methods like the Hill cipher, Blowfish, and DES by doing a lot of research and testing. Combining trigonometric ideas with a simple design makes it workable for real world uses and offers a promising way to protect data on the Internet

    Construction and Optimization of TRNG Based Substitution Boxes for Block Encryption Algorithms

    Get PDF
    Internet of Things is an ecosystem of interconnected devices that are accessible through the internet. The recent research focuses on adding more smartness and intelligence to these edge devices. This makes them susceptible to various kinds of security threats. These edge devices rely on cryptographic techniques to encrypt the pre-processed data collected from the sensors deployed in the field. In this regard, block cipher has been one of the most reliable options through which data security is accomplished. The strength of block encryption algorithms against different attacks is dependent on its nonlinear primitive which is called Substitution Boxes. For the design of S-boxes mainly algebraic and chaos-based techniques are used but researchers also found various weaknesses in these techniques. On the other side, literature endorse the true random numbers for information security due to the reason that, true random numbers are purely non-deterministic. In this paper firstly a natural dynamical phenomenon is utilized for the generation of true random numbers based S-boxes. Secondly, a systematic literature review was conducted to know which metaheuristic optimization technique is highly adopted in the current decade for the optimization of S-boxes. Based on the outcome of Systematic Literature Review (SLR), genetic algorithm is chosen for the optimization of s-boxes. The results of our method validate that the proposed dynamic S-boxes are effective for the block ciphers. Moreover, our results showed that the proposed substitution boxes achieve better cryptographic strength as compared with state-of-the-art techniques

    Construction and Optimization of Dynamic S-Boxes Based on Gaussian Distribution

    Get PDF
    Block ciphers are widely used for securing data and are known for their resistance to various types of attacks. The strength of a block cipher against these attacks often depends on the S-boxes used in the cipher. There are many chaotic map-based techniques in the literature for constructing the dynamic S-Boxes. While chaos-based approaches have certain attractive properties for this purpose, they also have some inherent weaknesses, including finite precision effect, dynamical degradation of chaotic systems, non-uniform distribution, discontinuity in chaotic sequences. These weaknesses can limit the effectiveness of chaotic map-based substitution boxes. In this paper, we propose an innovative approach for constructing dynamic S-boxes using Gaussian distribution-based pseudo-random sequences. The proposed technique overcomes the weaknesses of existing chaos-based S-box techniques by leveraging the strength of pseudo-randomness sequences. However, one of the main drawbacks of using Gaussian distribution-based pseudo-random sequences is the low nonlinearity of the resulting S-boxes. To address this limitation, we introduce the use of genetic algorithms (GA) to optimize the nonlinearity of Gaussian distribution-based S-boxes while preserving a high level of randomness. The proposed technique is evaluated using standard S-box performance criteria, including nonlinearity, bit independence criterion (BIC), linear approximation probability (LP), strict avalanche criterion (SAC), and differential approximation probability (DP). Results demonstrate that the proposed technique achieves a maximum nonlinearity of 112, which is comparable to the ASE algorithm
    corecore