263 research outputs found

    Photorealistic physically based render engines: a comparative study

    Full text link
    PĂ©rez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Directional Dipole Model for Subsurface Scattering

    Get PDF
    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some translucency effects in the rendered result. We present an improved analytical model for subsurface scattering that captures translucency effects present in the reference solutions but remaining absent with existing models. The key difference is that our model is based on ray source diffusion, rather than point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images are significantly closer to the references. Unlike some previous work, our model is fully analytic and requires no precomputation.</jats:p

    Towards Interactive Photorealistic Rendering

    Get PDF

    Perception based heterogeneous subsurface scattering for film

    Get PDF
    Many real world materials exhibit complex subsurface scattering of light. This internal light interaction creates the perception of translucency for the human visual system. Translucent materials and simulation of the subsurface scattering of light has become an expected necessity for generating warmth and realism in computer generated imagery. The light transport within heterogenous materials, such as marble, has proved challenging to model and render. The current material models available to digital artists have been limited to homogeneous subsurface scattering despite a few publications documenting success at simulating heterogeneous light transport. While the publications successfully simulate this complex phenomenon, the material descriptions have been highly specialized and far from intuitive. By combining the measurable properties of heterogeneous translucent materials with the defining properties of translucency, as perceived by the human visual system, a description of heterogeneous translucent materials that is suitable for artist use in a film production pipeline can be achieved. Development of the material description focuses on integration with the film pipeline, ease of use, and reasonable approximation of heterogeneous translucency based on perception. Methods of material manipulation are explored to determine which properties should be modifiable by artists while maintaining the perception of heterogenous translucency

    Intuitive and Accurate Material Appearance Design and Editing

    Get PDF
    Creating and editing high-quality materials for photorealistic rendering can be a difficult task due to the diversity and complexity of material appearance. Material design is the process by which artists specify the reflectance properties of a surface, such as its diffuse color and specular roughness. Even with the support of commercial software packages, material design can be a time-consuming trial-and-error task due to the counter-intuitive nature of the complex reflectance models. Moreover, many material design tasks require the physical realization of virtually designed materials as the final step, which makes the process even more challenging due to rendering artifacts and the limitations of fabrication. In this dissertation, we propose a series of studies and novel techniques to improve the intuitiveness and accuracy of material design and editing. Our goal is to understand how humans visually perceive materials, simplify user interaction in the design process and, and improve the accuracy of the physical fabrication of designs. Our first work focuses on understanding the perceptual dimensions for measured material data. We build a perceptual space based on a low-dimensional reflectance manifold that is computed from crowd-sourced data using a multi-dimensional scaling model. Our analysis shows the proposed perceptual space is consistent with the physical interpretation of the measured data. We also put forward a new material editing interface that takes advantage of the proposed perceptual space. We visualize each dimension of the manifold to help users understand how it changes the material appearance. Our second work investigates the relationship between translucency and glossiness in material perception. We conduct two human subject studies to test if subsurface scattering impacts gloss perception and examine how the shape of an object influences this perception. Based on our results, we discuss why it is necessary to include transparent and translucent media for future research in gloss perception and material design. Our third work addresses user interaction in the material design system. We present a novel Augmented Reality (AR) material design prototype, which allows users to visualize their designs against a real environment and lighting. We believe introducing AR technology can make the design process more intuitive and improve the authenticity of the results for both novice and experienced users. To test this assumption, we conduct a user study to compare our prototype with the traditional material design system with gray-scale background and synthetic lighting. The results demonstrate that with the help of AR techniques, users perform better in terms of objectively measured accuracy and time and they are subjectively more satisfied with their results. Finally, our last work turns to the challenge presented by the physical realization of designed materials. We propose a learning-based solution to map the virtually designed appearance to a meso-scale geometry that can be easily fabricated. Essentially, this is a fitting problem, but compared with previous solutions, our method can provide the fabrication recipe with higher reconstruction accuracy for a large fitting gamut. We demonstrate the efficacy of our solution by comparing the reconstructions with existing solutions and comparing fabrication results with the original design. We also provide an application of bi-scale material editing using the proposed method

    Image based analysis of visibility in smoke laden environments

    Get PDF
    This study investigates visibility in a smoke laden environment. For many years, researchers and engineers in fire safety have criticized the inadequacy of existing theory in describing the effects such as colour, viewing angle, environmental lighting etc. on the visibility of an emergency sign. In the current study, the author has raised the fundamental question on the concept of visibility and how it should be measured in fire safety engineering and tried to address the problem by redefining visibility based on the perceived image of a target sign. New algorithms have been created during this study to utilise modern hardware and software technology in the simulation of human perceived image of object in both experiment and computer modelling. Unlike the traditional threshold of visual distance, visibility in the current study has been defined as a continuous function changing from clearly discemable to completely invisible. It allows the comparison of visibility under various conditions, not just limited to the threshold. Current experiment has revealed that different conditions may results in the same visual threshold but follow very different path on the way leading to the threshold. The new definition of visibility has made the quantification of visibility in the pre-threshold conditions possible. Such quantification can help to improve the performance of fire evacuation since most evacuees will experience the pre-threshold condition. With current measurement of visibility, all the influential factors such as colour, viewing angle etc. can be tested in experiment and simulated in numerical model. Based on the newly introduced definition of visibility, a set of experiments have been carried output in a purposed built smoke tunnel. Digital camera images of various illuminated signs were taken under different illumination, colour and smoke conditions. Using an algorithm developed by the author in this study, the digital camera images were converted into simulated human perceived images. The visibility of a target sign is measured against the quality of its image acquired. Conclusions have been drawn by comparing visibility under different conditions. One of them is that signs illuminated with red and green lights have the similar visibility that is far better than that with blue light. It is the first time this seemingly obvious conclusion has been quantified. In the simulation of visibility in participating media, the author has introduced an algorithm that combines irradiance catching in 3D space with Monte Carlo ray tracing. It can calculate the distribution of scattered radiation with good accuracy without the high cost typically related to zonal method and the limitations in discrete ordinate method. The algorithm has been combined with a two pass solution method to produce high resolution images without introducing excessive number of rays from the light source. The convergence of the iterative solution procedure implemented has been theoretically proven. The accuracy of the model is demonstrated by comparing with the analytical solution of a point radiant source in 3D space. Further validation of the simulation model has been carried out by comparing the model prediction with the data from the smoke tunnel experiments. The output of the simulation model has been presented in the form of an innovative floor map of visibility (FMV). It helps the fire safety designer to identify regions of poor visibility in a glance and will prove to be a very useful tool in performance based fire safety design

    Image based analysis of visibility in smoke laden environments

    Get PDF
    This study investigates visibility in a smoke laden environment. For many years, researchers and engineers in fire safety have criticized the inadequacy of existing theory in describing the effects such as colour, viewing angle, environmental lighting etc. on the visibility of an emergency sign. In the current study, the author has raised the fundamental question on the concept of visibility and how it should be measured in fire safety engineering and tried to address the problem by redefining visibility based on the perceived image of a target sign. New algorithms have been created during this study to utilise modern hardware and software technology in the simulation of human perceived image of object in both experiment and computer modelling. Unlike the traditional threshold of visual distance, visibility in the current study has been defined as a continuous function changing from clearly discemable to completely invisible. It allows the comparison of visibility under various conditions, not just limited to the threshold. Current experiment has revealed that different conditions may results in the same visual threshold but follow very different path on the way leading to the threshold. The new definition of visibility has made the quantification of visibility in the pre-threshold conditions possible. Such quantification can help to improve the performance of fire evacuation since most evacuees will experience the pre-threshold condition. With current measurement of visibility, all the influential factors such as colour, viewing angle etc. can be tested in experiment and simulated in numerical model.Based on the newly introduced definition of visibility, a set of experiments have been carried output in a purposed built smoke tunnel. Digital camera images of various illuminated signs were taken under different illumination, colour and smoke conditions. Using an algorithm developed by the author in this study, the digital camera images were converted into simulated human perceived images. The visibility of a target sign is measured against the quality of its image acquired. Conclusions have been drawn by comparing visibility under different conditions. One of them is that signs illuminated with red and green lights have the similar visibility that is far better than that with blue light. It is the first time this seemingly obvious conclusion has been quantified.In the simulation of visibility in participating media, the author has introduced an algorithm that combines irradiance catching in 3D space with Monte Carlo ray tracing. It can calculate the distribution of scattered radiation with good accuracy without the high cost typically related to zonal method and the limitations in discrete ordinate method. The algorithm has been combined with a two pass solution method to produce high resolution images without introducing excessive number of rays from the light source. The convergence of the iterative solution procedure implemented has been theoretically proven. The accuracy of the model is demonstrated by comparing with the analytical solution of a point radiant source in 3D space. Further validation of the simulation model has been carried out by comparing the model prediction with the data from the smoke tunnel experiments.The output of the simulation model has been presented in the form of an innovative floor map of visibility (FMV). It helps the fire safety designer to identify regions of poor visibility in a glance and will prove to be a very useful tool in performance based fire safety design

    Interactive display of isosurfaces with global illumination

    Get PDF
    Journal ArticleAbstract-In many applications, volumetric data sets are examined by displaying isosurfaces, surfaces where the data, or some function of the data, takes on a given value. Interactive applications typically use local lighting models to render such surfaces. This work introduces a method to precompute or lazily compute global illumination to improve interactive isosurface renderings. The precomputed illumination resides in a separate volume and includes direct light, shadows, and interreflections. Using this volume, interactive globally illuminated renderings of isosurfaces become feasible while still allowing dynamic manipulation of lighting, viewpoint and isovalue
    • …
    corecore