2 research outputs found

    Moldable Items Packing Optimization

    Get PDF
    This research has led to the development of two mathematical models to optimize the problem of packing a hybrid mix of rigid and moldable items within a three-dimensional volume. These two developed packing models characterize moldable items from two perspectives: (1) when limited discrete configurations represent the moldable items and (2) when all continuous configurations are available to the model. This optimization scheme is a component of a lean effort that attempts to reduce the lead-time associated with the implementation of dynamic product modifications that imply packing changes. To test the developed models, they are applied to the dynamic packing changes of Meals, Ready-to-Eat (MREs) at two different levels: packing MRE food items in the menu bags and packing menu bags in the boxes. These models optimize the packing volume utilization and provide information for MRE assemblers, enabling them to preplan for packing changes in a short lead-time. The optimization results are validated by running the solutions multiple times to access the consistency of solutions. Autodesk Inventor helps visualize the solutions to communicate the optimized packing solutions with the MRE assemblers for training purposes

    Knapsack Problems with Side Constraints

    Get PDF
    The thesis considers a specific class of resource allocation problems in Combinatorial Optimization: the Knapsack Problems. These are paradigmatic NP-hard problems where a set of items with given profits and weights is available. The aim is to select a subset of the items in order to maximize the total profit without exceeding a known knapsack capacity. In the classical 0-1 Knapsack Problem (KP), each item can be picked at most once. The focus of the thesis is on four generalizations of KP involving side constraints beyond the capacity bound. More precisely, we provide solution approaches and insights for the following problems: The Knapsack Problem with Setups; the Collapsing Knapsack Problem; the Penalized Knapsack Problem; the Incremental Knapsack Problem. These problems reveal challenging research topics with many real-life applications. The scientific contributions we provide are both from a theoretical and a practical perspective. On the one hand, we give insights into structural elements and properties of the problems and derive a series of approximation results for some of them. On the other hand, we offer valuable solution approaches for direct applications of practical interest or when the problems considered arise as sub-problems in broader contexts
    corecore