176 research outputs found

    Service Oriented Big Data Management for Transport

    No full text
    International audienceThe increasing power of computer hardware and the sophistication of computer software have brought many new possibilities to information world. On one side the possibility to analyse massive data sets has brought new insight, knowledge and information. On the other, it has enabled to massively distribute computing and has opened to a new programming paradigm called Service Oriented Computing particularly well adapted to cloud computing. Applying these new technologies to the transport industry can bring new understanding to town transport infrastructures. The objective of our work is to manage and aggregate cloud services for managing big data and assist decision making for transport systems. Thus this paper presents our approach to propose a service oriented architecture for big data analytics for transport systems based on the cloud. Proposing big data management strategies for data produced by transport infra‐ structures, whilst maintaining cost effective systems deployed on the cloud, is a promising approach. We present the advancement for developing the Data acquisition service and Information extraction and cleaning service as well as the analysis for choosing a sharding strategy

    Modeling and Evaluation of a Ridesharing Matching System from Multi-Stakeholders\u27 Perspective

    Get PDF
    With increasing travel demand and mobility service quality expectations, demand responsive innovative services continue to emerge. Ridesharing is an established, yet evolving, mobility option that can provide more customized, reliable shared service without any new investment in the transportation infrastructure. To maximize the benefits of ridesharing service, efficient matching and distribution of riders among available drivers can provide a reliable mobility option under most operating conditions. Service efficiency of ridesharing depends on the system performance (e.g., trip travel time, trip delay, trip distance, detour distance, and trip satisfaction) acceptable to diverse mobility stakeholders (e.g., riders, drivers, ridesharing operators, and transportation agencies). This research modeled the performance of a ridesharing service system considering four objectives: (i) minimization of system-wide passengers’ waiting time, (ii) minimization of system-wide vehicle miles travelled (VMT), (iii) minimization of system-wide detour distance, and (iv) maximization of system-wide drivers’ profit. Tradeoff evaluation of objectives revealed that system-wide VMT minimization objective performed best with least sacrifices on the other three objectives from their respective best performance level based on set of routes generated in this study. On the other hand, system-wide drivers’ profit maximization objective provided highest monetary incentives for drivers and riders in terms of maximizing profit and saving travel cost respectively. System-wide minimization of detour distance was found to be least flexible in providing shared rides. The findings of this research provide useful insights on ridesharing system modeling and performance evaluation, and can be used in developing and implementing ridesharing service considering multiple stakeholders’ concerns

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    Deep Sequence Learning with Auxiliary Information for Traffic Prediction

    Get PDF
    Predicting traffic conditions from online route queries is a challenging task as there are many complicated interactions over the roads and crowds involved. In this paper, we intend to improve traffic prediction by appropriate integration of three kinds of implicit but essential factors encoded in auxiliary information. We do this within an encoder-decoder sequence learning framework that integrates the following data: 1) offline geographical and social attributes. For example, the geographical structure of roads or public social events such as national celebrations; 2) road intersection information. In general, traffic congestion occurs at major junctions; 3) online crowd queries. For example, when many online queries issued for the same destination due to a public performance, the traffic around the destination will potentially become heavier at this location after a while. Qualitative and quantitative experiments on a real-world dataset from Baidu have demonstrated the effectiveness of our framework.Comment: KDD 2018. The first two authors share equal contribution

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page
    • 

    corecore