4 research outputs found

    Projects Never Fail: A Critical Review on Estimation of Project Scheduling and Project Costing

    Get PDF
    Uncertainty remains common in all projects. It is need to realize this uncertainty and have to minimize the effect of this uncertainty to achieve better project outcomes. To realize the project on truthful base it is required to develop project schedule and estimate project costing on reality bases. A lot of project scheduling and costing techniques and tools are used to measure the accuracy. The new systematic techniques increase project outcomes and also reduce the uncertainty from the projects.  This study will leads to examine thoroughly project scheduling and project costing. Then this study will guide project managers how to develop a project schedule and what factors are effecting on the project scheduling and a sample project schedule will also provide for project managers and students of project management. After that the major sources of project costing and the method to calculate the project cost will also provide. And the sample project costing sheet is also develop in this study. Both project scheduling and project costing will develop the professionalism among project managers and students of project managers which they can never think before this study and also enhance project outcomes. Keywords: Project Scheduling, Project Costing, Uncertainty Handling and Project Succes

    An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration

    No full text
    International audienceIn this paper we address the Preemptive Resource Constrained Project Scheduling Problem (PRCPSP). PRCPSP requires a partially ordered set of activities to be scheduled using limited renewable resources such that any activity can be interrupted and later resumed without penalty. The objective is to minimize the project duration. This paper proposes an effective branch-and-price algorithm for solving PRCPSP based upon minimal Interval Order Enumeration involving column generation as well as constraint propagation. Experiments conducted on various types of instances have given very satisfactory results. Our algorithm is able to solve to optimality the entire set of J30, BL and Pack instances while satisfying the preemptive requirement. Furthermore, this algorithm provides improved best-known lower bounds for some of the J60, J90 and J120 instances in the non-preemptive case (RCPSP)

    A hyper-heuristic based ensemble genetic programming approach for stochastic resource constrained project scheduling problem

    Get PDF
    In project scheduling studies, to the best of our knowledge, the hyper-heuristic collaborative scheduling is first-time applied to project scheduling with random activity durations. A hyper-heuristic based ensemble genetic programming (HH-EGP) method is proposed for solving stochastic resource constrained project scheduling problem (SRCPSP) by evolving an ensemble of priority rules (PRs). The proposed approach features with (1) integrating the critical path method into the resource-based policy class to generate schedules; (2) improving the existing single hyper-heuristic project scheduling research to construct a suitable solution space for solving SRCPSP; and (3) bettering genetic evolution of each subpopulation from a decision ensemble with three different local searches in corporation with discriminant mutation and discriminant population renewal. In addition, a sequence voting mechanism is designed to deal with collaborative decision-making in the scheduling process for SRCPSP. The benchmark PSPLIB is performed to verify the advantage of the HH-EGP over heuristics, meta-heuristics and the single hyper-heuristic approaches

    Optimized Resource-Constrained Method for Project Schedule Compression

    Get PDF
    Construction projects are unique and can be executed in an accelerated manner to meet market conditions. Accordingly, contractors need to compress project durations to meet client changing needs and related contractual obligations and recover from delays experienced during project execution. This acceleration requires resource planning techniques such as resource leveling and allocation. Various optimization methods have been proposed for the resource-constrained schedule compression and resource allocation and leveling individually. However, in real-world construction projects, contractors need to consider these aspects concurrently. For this purpose, this study proposes an integrated method that allows for joint consideration of the above two aspects. The method aims to optimize project duration and costs through the resources and cost of the execution modes assigned to project activities. It accounts for project cost and resource-leveling based on costs and resources imbedded in these modes of execution. The method's objective is to minimize the project duration and cost, including direct cost, indirect cost, and delay penalty, and strike a balance between the cost of acquiring and releasing resources on the one hand and the cost of activity splitting on the other hand. The novelty of the proposed method lies in its capacity to consider resource planning and project scheduling under uncertainty simultaneously while accounting for activity splitting. The proposed method utilizes the fuzzy set theory (FSs) for modeling uncertainty associated with the duration and cost of project activities and genetic algorithm (GA) for scheduling optimization. The method has five main modules that support two different optimization methods: modeling uncertainty and defuzzification module; scheduling module; cost calculations module; sensitivity IV analysis module; and decision-support module. The two optimization methods use the genetic algorithm as an optimization engine to find a set of non-dominated solutions. One optimization method uses the elitist non-dominated sorting genetic algorithm (NSGA-II), while the other uses a dynamic weighted optimization genetic algorithm. The developed scheduling and optimization method is coded in python as a stand-alone automated computerized tool to facilitate the needed iterative rescheduling of project activities and project schedule optimization. The developed method is applied to a numerical example to demonstrate its use and to illustrate its capabilities. Since the adopted numerical example is not a resource-constrained optimization example, the proposed optimization methods are validated through a multi-layered comparative analysis that involves performance evaluation, statistical comparisons, and performance stability evaluation. The performance evaluation results demonstrated the superiority of the NSGA-II against the dynamic weighted optimization genetic algorithm in finding better solutions. Moreover, statistical comparisons, which considered solutions’ mean, and best values, revealed that both optimization methods could solve the multi-objective time-cost optimization problem. However, the solutions’ range values indicated that the NSGA-II was better in exploring the search space before converging to a global optimum; NSGA-II had a trade-off between exploration (exploring the new search space) and exploitation (using already detected points to search the optimum). Finally, the coefficient of variation test revealed that the NSGA-II performance was more stable than that of the dynamic weighted optimization genetic algorithm. It is expected that the developed method can assist contractors in preparation for efficient schedule compression, which optimizes schedule and ensures efficient utilization of their resources
    corecore