2,777 research outputs found

    Packing Chromatic Number of Distance Graphs

    Get PDF
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that vertices of GG can be partitioned into disjoint classes X1,...,XkX_1, ..., X_k where vertices in XiX_i have pairwise distance greater than ii. We study the packing chromatic number of infinite distance graphs G(Z,D)G(Z, D), i.e. graphs with the set ZZ of integers as vertex set and in which two distinct vertices i,jZi, j \in Z are adjacent if and only if ijD|i - j| \in D. In this paper we focus on distance graphs with D={1,t}D = \{1, t\}. We improve some results of Togni who initiated the study. It is shown that χρ(G(Z,D))35\chi_{\rho}(G(Z, D)) \leq 35 for sufficiently large odd tt and χρ(G(Z,D))56\chi_{\rho}(G(Z, D)) \leq 56 for sufficiently large even tt. We also give a lower bound 12 for t9t \geq 9 and tighten several gaps for χρ(G(Z,D))\chi_{\rho}(G(Z, D)) with small tt.Comment: 13 pages, 3 figure

    QCSP on partially reflexive forests

    Full text link
    We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H ranges over partially reflexive forests. We obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or is NP-hard. The separating condition is related firstly to connectivity, and thereafter to accessibility from all vertices of H to connected reflexive subgraphs. In the case of partially reflexive paths, we give a refinement of our dichotomy: QCSP(H) is either in NL or is Pspace-complete

    Eccentric Coloring in graphs

    Get PDF
    he \emph{eccentricity} e(u)e(u) of a vertex uu is the maximum distance of uu to any other vertex of GG. A vertex vv is an \emph{eccentric vertex} of vertex uu if the distance from uu to vv is equal to e(u)e(u). An \emph{eccentric coloring} of a graph G=(V,E)G = (V, E) is a function \emph{color}: VN V \rightarrow N such that\\ (i) for all u,vVu, v \in V, (color(u)=color(v))d(u,v)>color(u)(color(u) = color(v)) \Rightarrow d(u, v) > color(u).\\ (ii) for all vVv \in V, color(v)e(v)color(v) \leq e(v).\\ The \emph{eccentric chromatic number} χeN\chi_{e}\in N for a graph GG is the lowest number of colors for which it is possible to eccentrically color \ GG \ by colors: V{1,2,,χe}V \rightarrow \{1, 2, \ldots , \chi_{e} \}. In this paper, we have considered eccentric colorability of a graph in relation to other properties. Also, we have considered the eccentric colorability of lexicographic product of some special class of graphs

    Packing chromatic vertex-critical graphs

    Full text link
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that the vertex set of GG can be partitioned into sets ViV_i, i[k]i\in [k], where vertices in ViV_i are pairwise at distance at least i+1i+1. Packing chromatic vertex-critical graphs, χρ\chi_{\rho}-critical for short, are introduced as the graphs GG for which χρ(Gx)<χρ(G)\chi_{\rho}(G-x) < \chi_{\rho}(G) holds for every vertex xx of GG. If χρ(G)=k\chi_{\rho}(G) = k, then GG is kk-χρ\chi_{\rho}-critical. It is shown that if GG is χρ\chi_{\rho}-critical, then the set {χρ(G)χρ(Gx): xV(G)}\{\chi_{\rho}(G) - \chi_{\rho}(G-x):\ x\in V(G)\} can be almost arbitrary. The 33-χρ\chi_{\rho}-critical graphs are characterized, and 44-χρ\chi_{\rho}-critical graphs are characterized in the case when they contain a cycle of length at least 55 which is not congruent to 00 modulo 44. It is shown that for every integer k2k\ge 2 there exists a kk-χρ\chi_{\rho}-critical tree and that a kk-χρ\chi_{\rho}-critical caterpillar exists if and only if k7k\le 7. Cartesian products are also considered and in particular it is proved that if GG and HH are vertex-transitive graphs and diam(G)+diam(H)χρ(G){\rm diam(G)} + {\rm diam}(H) \le \chi_{\rho}(G), then GHG\,\square\, H is χρ\chi_{\rho}-critical
    corecore