624 research outputs found

    Stairs Detection for Enhancing Wheelchair Capabilities Based on Radar Sensors

    Full text link
    Powered wheelchair users encounter barriers to their mobility everyday. Entering a building with non barrier-free areas can massively impact the user mobility related activities. There are a few commercial devices and some experimental that can climb stairs using for instance adaptive wheels with joints or caterpillar drive. These systems rely on the use for sensing and control. For safe automated obstacle crossing, a robust and environment invariant detection of the surrounding is necessary. Radar may prove to be a suitable sensor for its capability to handle harsh outdoor environmental conditions. In this paper, we introduce a mirror based two dimensional Frequency-Modulated Continuous-Wave (FMCW) radar scanner for stair detection. A radar image based stair dimensioning approach is presented and tested under laboratory and realistic conditions.Comment: 5 pages, Accepted and presented in 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE 2017

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Autonomous detection and ascent of a step for an electric wheelchair

    Get PDF
    With the number of individuals using a wheelchair on the rise, the issue of removing architectural barriers, or at least overcoming them, has to be faced to improve independence, inclusiveness, and participation of wheelchair users. Some electric wheelchairs can climb and descend stairs and obstacles, however, the actual operations required to do so safely may be complex and may require an experienced or trained user. To overcome this issue, a method to first detect and classify a step and then autonomously climb it safely is proposed here. The same method is then applied and tested on an actual stair-climbing wheelchair prototype to prove its reliability in different conditions

    Design of a self-leveling cam mechanism for a stair climbing wheelchair

    Get PDF
    This paper presents a new version of Wheelchair.q, a wheelchair with stair climbing ability. The wheelchair is able to climb single obstacles or staircases thanks to a hybrid wheel-leg locomotion unit with a triple-wheels cluster architecture. The new concept presented in this work represents an improvement respect to previous versions. Through a different arrangement of functional elements, the wheelchair performances in terms of stability and regularity during movement on stair have been increased. In particular, attention has been paid to ensure a regular and comfortable motion for the user during stair climbing operation. For this reason, a cam mechanism has been introduced and designed with the aim to compensate the oscillation generated on the wheelchair frame by the locomotion unit rotation. A design methodology for the cam profile is presented. Moreover, a parametric analysis on the cam profile and on the mechanism dimensions has been conducted with the aim to find a cam profile with suitable dimensions and performances in terms of pressure angle and radius of curvature

    Design of Motorized Wheel chai

    Get PDF
    First wheelchair model evolved long back in 18th century, but rapid development in this field initiated since mid of 20th century. Since then, many varieties of models had been designed, extending into broad range of products. This project involves the design of an ergonomically designed electric wheelchair for domestic use by Indian old aged people. Stair climbing functionality is embedded in the design through its structure and mechanism. The product mainly consists of 3 modules viz. seat, links and frame. Anthropometric measures are considered in the dimensioning of seat. The frame and wheels are designed and developed through the equations generated from the statistical data of dimensions of staircases in Indian houses. Focus is laid on different parameters such as form, functionality, technology and architecture of the product. The design is validated by developing Digital Mockups of individual parts are generated in CATIA and are assembled to form the final product. Necessary simulations of the product are generated in virtual environment of CATIA. The physical and focused prototype indicating the structure and functionality is developed using thermocol material. Here wheel carriers are made in RP (Fused Deposition Modelling) using ABS (Acrylo Butadiene Styrene) material. Wheelchair is embedded with some additional features like integrated commode facility, after gathering costumer requirements from different subjects

    CES-514 Market Evaluation for Colchester Catalyst on the use of Robotic Wheelchairs

    Get PDF
    1.2 What is a Robotic Wheelchair?........................... 1 1.3 Type of Marketing Research used and sources of data...............

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore