5 research outputs found

    Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect

    Full text link
    Data Science and Machine Learning have become fundamental assets for companies and research institutions alike. As one of its fields, supervised classification allows for class prediction of new samples, learning from given training data. However, some properties can cause datasets to be problematic to classify. In order to evaluate a dataset a priori, data complexity metrics have been used extensively. They provide information regarding different intrinsic characteristics of the data, which serve to evaluate classifier compatibility and a course of action that improves performance. However, most complexity metrics focus on just one characteristic of the data, which can be insufficient to properly evaluate the dataset towards the classifiers' performance. In fact, class overlap, a very detrimental feature for the classification process (especially when imbalance among class labels is also present) is hard to assess. This research work focuses on revisiting complexity metrics based on data morphology. In accordance to their nature, the premise is that they provide both good estimates for class overlap, and great correlations with the classification performance. For that purpose, a novel family of metrics have been developed. Being based on ball coverage by classes, they are named after Overlap Number of Balls. Finally, some prospects for the adaptation of the former family of metrics to singular (more complex) problems are discussed.Comment: 23 pages, 9 figures, preprin

    The role of classifiers and data complexity in learned Bloom filters: insights and recommendations

    Get PDF
    Bloom filters, since their introduction over 50 years ago, have become a pillar to handle membership queries in small space, with relevant application in Big Data Mining and Stream Processing. Further improvements have been recently proposed with the use of Machine Learning techniques: learned Bloom filters. Those latter make considerably more complicated the proper parameter setting of this multi-criteria data structure, in particular in regard to the choice of one of its key components (the classifier) and accounting for the classification complexity of the input dataset. Given this State of the Art, our contributions are as follows. (1) A novel methodology, supported by software, for designing, analyzing and implementing learned Bloom filters that account for their own multi-criteria nature, in particular concerning classifier type choice and data classification complexity. Extensive experiments show the validity of the proposed methodology and, being our software public, we offer a valid tool to the practitioners interested in using learned Bloom filters. (2) Further contributions to the advancement of the State of the Art that are of great practical relevance are the following: (a) the classifier inference time should not be taken as a proxy for the filter reject time; (b) of the many classifiers we have considered, only two offer good performance; this result is in agreement with and further strengthens early findings in the literature; (c) Sandwiched Bloom filter, which is already known as being one of the references of this area, is further shown here to have the remarkable property of robustness to data complexity and classifier performance variability
    corecore