4 research outputs found

    An asymptotic bound for the strong chromatic number

    Get PDF
    The strong chromatic number χs(G)\chi_{\text{s}}(G) of a graph GG on nn vertices is the least number rr with the following property: after adding r⌈n/r⌉−nr \lceil n/r \rceil - n isolated vertices to GG and taking the union with any collection of spanning disjoint copies of KrK_r in the same vertex set, the resulting graph has a proper vertex-colouring with rr colours. We show that for every c>0c > 0 and every graph GG on nn vertices with Δ(G)≥cn\Delta(G) \ge cn, χs(G)≤(2+o(1))Δ(G)\chi_{\text{s}}(G) \leq (2 + o(1)) \Delta(G), which is asymptotically best possible.Comment: Minor correction, accepted for publication in Combin. Probab. Compu

    On sufficient conditions for Hamiltonicity in dense graphs

    Full text link
    We study structural conditions in dense graphs that guarantee the existence of vertex-spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. Our main result in turn states that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Moreover, the same holds for embedding powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This solves the embedding problem that underlies multiple lines of research on sufficient conditions for Hamiltonicity in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore-type degree conditions, P\'osa-type degree conditions, deficiency-type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders

    Extremal results in hypergraph theory via the absorption method

    Get PDF
    The so-called "absorbing method" was first introduced in a systematic way by Rödl, Ruciński and Szemerédi in 2006, and has found many uses ever since. Speaking in a general sense, it is useful for finding spanning substructures of combinatorial structures. We establish various results of different natures, in both graph and hypergraph theory, most of them using the absorbing method: 1. We prove an asymptotically best-possible bound on the strong chromatic number with respect to the maximum degree of the graph. This establishes a weak version of a conjecture of Aharoni, Berger and Ziv. 2. We determine asymptotic minimum codegree thresholds which ensure the existence of tilings with tight cycles (of a given size) in uniform hypergraphs. Moreover, we prove results on coverings with tight cycles. 3. We show that every 2-coloured complete graph on the integers contains a monochromatic infinite path whose vertex set is sufficiently "dense" in the natural numbers. This improves results of Galvin and Erdős and of DeBiasio and McKenney

    An asymptotic bound for the strong chromatic number

    No full text
    corecore