8,610 research outputs found

    Enhancing retinal images by nonlinear registration

    Full text link
    Being able to image the human retina in high resolution opens a new era in many important fields, such as pharmacological research for retinal diseases, researches in human cognition, nervous system, metabolism and blood stream, to name a few. In this paper, we propose to share the knowledge acquired in the fields of optics and imaging in solar astrophysics in order to improve the retinal imaging at very high spatial resolution in the perspective to perform a medical diagnosis. The main purpose would be to assist health care practitioners by enhancing retinal images and detect abnormal features. We apply a nonlinear registration method using local correlation tracking to increase the field of view and follow structure evolutions using correlation techniques borrowed from solar astronomy technique expertise. Another purpose is to define the tracer of movements after analyzing local correlations to follow the proper motions of an image from one moment to another, such as changes in optical flows that would be of high interest in a medical diagnosis.Comment: 21 pages, 7 figures, submitted to Optics Communication

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table
    corecore