3 research outputs found

    Application-Specific Heterogeneous Network-on-Chip Design

    Get PDF
    Cataloged from PDF version of article.As a result of increasing communication demands, application-specific and scalable Network-on-Chips (NoCs) have emerged to connect processing cores and subsystems in Multiprocessor System-on-Chips. A challenge in application-specific NoC design is to find the right balance among different tradeoffs, such as communication latency, power consumption and chip area. We propose a novel approach that generates latency-aware heterogeneous NoC topology. Experimental results show that our approach improves the total communication latency up to 27% with modest power consumption. © 2013 The Author 2013. Published by Oxford University Press on behalf of The British Computer Society

    Application-specific heterogeneous network-on-chip design

    Get PDF
    As a result of increasing communication demands, application-specific and scalable Network-on-Chips (NoCs) have emerged to connect processing cores and subsystems in Multiprocessor System-on-Chips. A challenge in application-specific NoC design is to find the right balance among different tradeoffs, such as communication latency, power consumption and chip area. We propose a novel approach that generates latency-aware heterogeneous NoC topology. Experimental results show that our approach improves the total communication latency up to 27% with modest power consumption. © 2013 The Author 2013. Published by Oxford University Press on behalf of The British Computer Society

    An Area-Optimality Study of Floorplanning

    No full text
    A novel algorithm for rectangular floorplanning with guaranteed 100% area utilization is used to construct new sets of floorplanning benchmarks. By minimizing the maximum block aspect ratio subject to a zero-dead-space constraint, example zero-dead-space (ZDS) floorplans matching the area profiles of any existing floorplanning benchmark circuits can be constructed. A mathematical analysis shows that the aspect ratios of the ZDS benchmarks' blocks are uniformly bounded within [1, 3] in most cases. Block packings produced by the Parquet, B*-tree, TCG-S, and BloBB packages on these new benchmarks are compared to the optimal-area floorplans produced by the ZDS algorithm
    corecore