1,393 research outputs found

    A Systematic Review of Learning based Notion Change Acceptance Strategies for Incremental Mining

    Get PDF
    The data generated contemporarily from different communication environments is dynamic in content different from the earlier static data environments. The high speed streams have huge digital data transmitted with rapid context changes unlike static environments where the data is mostly stationery. The process of extracting, classifying, and exploring relevant information from enormous flowing and high speed varying streaming data has several inapplicable issues when static data based strategies are applied. The learning strategies of static data are based on observable and established notion changes for exploring the data whereas in high speed data streams there are no fixed rules or drift strategies existing beforehand and the classification mechanisms have to develop their own learning schemes in terms of the notion changes and Notion Change Acceptance by changing the existing notion, or substituting the existing notion, or creating new notions with evaluation in the classification process in terms of the previous, existing, and the newer incoming notions. The research in this field has devised numerous data stream mining strategies for determining, predicting, and establishing the notion changes in the process of exploring and accurately predicting the next notion change occurrences in Notion Change. In this context of feasible relevant better knowledge discovery in this paper we have given an illustration with nomenclature of various contemporarily affirmed models of benchmark in data stream mining for adapting the Notion Change

    Knowledge discovery in data streams

    Full text link
    Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resources are abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works

    Learning structure and schemas from heterogeneous domains in networked systems: a survey

    Get PDF
    The rapidly growing amount of available digital documents of various formats and the possibility to access these through internet-based technologies in distributed environments, have led to the necessity to develop solid methods to properly organize and structure documents in large digital libraries and repositories. Specifically, the extremely large size of document collections make it impossible to manually organize such documents. Additionally, most of the document sexist in an unstructured form and do not follow any schemas. Therefore, research efforts in this direction are being dedicated to automatically infer structure and schemas. This is essential in order to better organize huge collections as well as to effectively and efficiently retrieve documents in heterogeneous domains in networked system. This paper presents a survey of the state-of-the-art methods for inferring structure from documents and schemas in networked environments. The survey is organized around the most important application domains, namely, bio-informatics, sensor networks, social networks, P2Psystems, automation and control, transportation and privacy preserving for which we analyze the recent developments on dealing with unstructured data in such domains.Peer ReviewedPostprint (published version

    Data science applications to connected vehicles: Key barriers to overcome

    Get PDF
    The connected vehicles will generate huge amount of pervasive and real time data, at very high frequencies. This poses new challenges for Data science. How to analyse these data and how to address short-term and long-term storage are some of the key barriers to overcome.JRC.C.6-Economics of Climate Change, Energy and Transpor

    Experiments with Two Approaches for Tracking Drifting Concepts

    Get PDF
    . This paper addresses the task of learning classifier from stream of labelled data. In this case we can face problem that the underling concepts can changes over time. The paper studies two mechanisms developed for dealing with changing concepts. Both are based on the time window idea. The first one forgets gradual, by assigning to the examples weight that gradually decreases over time. The second one uses a statistical test to detect changes in concept and then optimizes the size of time window, aiming to maximise the classification accuracy on the new examples. Both methods are general in nature and can be used with any learning algorithm. The objectives of the conducted experiments were to compare the mechanisms and explore whether they can combined to achieve a synergetic effect. Results from experiments with three basic learning algorithms (kNN, ID3 and NBC) using four datasets are reported and discussed

    Dynamic Data Mining: Methodology and Algorithms

    No full text
    Supervised data stream mining has become an important and challenging data mining task in modern organizations. The key challenges are threefold: (1) a possibly infinite number of streaming examples and time-critical analysis constraints; (2) concept drift; and (3) skewed data distributions. To address these three challenges, this thesis proposes the novel dynamic data mining (DDM) methodology by effectively applying supervised ensemble models to data stream mining. DDM can be loosely defined as categorization-organization-selection of supervised ensemble models. It is inspired by the idea that although the underlying concepts in a data stream are time-varying, their distinctions can be identified. Therefore, the models trained on the distinct concepts can be dynamically selected in order to classify incoming examples of similar concepts. First, following the general paradigm of DDM, we examine the different concept-drifting stream mining scenarios and propose corresponding effective and efficient data mining algorithms. • To address concept drift caused merely by changes of variable distributions, which we term pseudo concept drift, base models built on categorized streaming data are organized and selected in line with their corresponding variable distribution characteristics. • To address concept drift caused by changes of variable and class joint distributions, which we term true concept drift, an effective data categorization scheme is introduced. A group of working models is dynamically organized and selected for reacting to the drifting concept. Secondly, we introduce an integration stream mining framework, enabling the paradigm advocated by DDM to be widely applicable for other stream mining problems. Therefore, we are able to introduce easily six effective algorithms for mining data streams with skewed class distributions. In addition, we also introduce a new ensemble model approach for batch learning, following the same methodology. Both theoretical and empirical studies demonstrate its effectiveness. Future work would be targeted at improving the effectiveness and efficiency of the proposed algorithms. Meantime, we would explore the possibilities of using the integration framework to solve other open stream mining research problems

    Adaptive Learning and Mining for Data Streams and Frequent Patterns

    Get PDF
    Aquesta tesi està dedicada al disseny d'algorismes de mineria de dades per fluxos de dades que evolucionen en el temps i per l'extracció d'arbres freqüents tancats. Primer ens ocupem de cadascuna d'aquestes tasques per separat i, a continuació, ens ocupem d'elles conjuntament, desenvolupant mètodes de classificació de fluxos de dades que contenen elements que són arbres. En el model de flux de dades, les dades arriben a gran velocitat, i els algorismes que els han de processar tenen limitacions estrictes de temps i espai. En la primera part d'aquesta tesi proposem i mostrem un marc per desenvolupar algorismes que aprenen de forma adaptativa dels fluxos de dades que canvien en el temps. Els nostres mètodes es basen en l'ús de mòduls detectors de canvi i estimadors en els llocs correctes. Proposem ADWIN, un algorisme de finestra lliscant adaptativa, per la detecció de canvi i manteniment d'estadístiques actualitzades, i proposem utilitzar-lo com a caixa negra substituint els comptadors en algorismes inicialment no dissenyats per a dades que varien en el temps. Com ADWIN té garanties teòriques de funcionament, això obre la possibilitat d'ampliar aquestes garanties als algorismes d'aprenentatge i de mineria de dades que l'usin. Provem la nostre metodologia amb diversos mètodes d'aprenentatge com el Naïve Bayes, partició, arbres de decisió i conjunt de classificadors. Construïm un marc experimental per fer mineria amb fluxos de dades que varien en el temps, basat en el programari MOA, similar al programari WEKA, de manera que sigui fàcil pels investigadors de realitzar-hi proves experimentals. Els arbres són grafs acíclics connectats i són estudiats com vincles en molts casos. En la segona part d'aquesta tesi, descrivim un estudi formal dels arbres des del punt de vista de mineria de dades basada en tancats. A més, presentem algorismes eficients per fer tests de subarbres i per fer mineria d'arbres freqüents tancats ordenats i no ordenats. S'inclou una anàlisi de l'extracció de regles d'associació de confiança plena dels conjunts d'arbres tancats, on hem trobat un fenomen interessant: les regles que la seva contrapart proposicional és no trivial, són sempre certes en els arbres a causa de la seva peculiar combinatòria. I finalment, usant aquests resultats en fluxos de dades evolutius i la mineria d'arbres tancats freqüents, hem presentat algorismes d'alt rendiment per fer mineria d'arbres freqüents tancats de manera adaptativa en fluxos de dades que evolucionen en el temps. Introduïm una metodologia general per identificar patrons tancats en un flux de dades, utilitzant la Teoria de Reticles de Galois. Usant aquesta metodologia, desenvolupem un algorisme incremental, un basat en finestra lliscant, i finalment un que troba arbres freqüents tancats de manera adaptativa en fluxos de dades. Finalment usem aquests mètodes per a desenvolupar mètodes de classificació per a fluxos de dades d'arbres.This thesis is devoted to the design of data mining algorithms for evolving data streams and for the extraction of closed frequent trees. First, we deal with each of these tasks separately, and then we deal with them together, developing classification methods for data streams containing items that are trees. In the data stream model, data arrive at high speed, and the algorithms that must process them have very strict constraints of space and time. In the first part of this thesis we propose and illustrate a framework for developing algorithms that can adaptively learn from data streams that change over time. Our methods are based on using change detectors and estimator modules at the right places. We propose an adaptive sliding window algorithm ADWIN for detecting change and keeping updated statistics from a data stream, and use it as a black-box in place or counters or accumulators in algorithms initially not designed for drifting data. Since ADWIN has rigorous performance guarantees, this opens the possibility of extending such guarantees to learning and mining algorithms. We test our methodology with several learning methods as Naïve Bayes, clustering, decision trees and ensemble methods. We build an experimental framework for data stream mining with concept drift, based on the MOA framework, similar to WEKA, so that it will be easy for researchers to run experimental data stream benchmarks. Trees are connected acyclic graphs and they are studied as link-based structures in many cases. In the second part of this thesis, we describe a rather formal study of trees from the point of view of closure-based mining. Moreover, we present efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. We include an analysis of the extraction of association rules of full confidence out of the closed sets of trees, and we have found there an interesting phenomenon: rules whose propositional counterpart is nontrivial are, however, always implicitly true in trees due to the peculiar combinatorics of the structures. And finally, using these results on evolving data streams mining and closed frequent tree mining, we present high performance algorithms for mining closed unlabeled rooted trees adaptively from data streams that change over time. We introduce a general methodology to identify closed patterns in a data stream, using Galois Lattice Theory. Using this methodology, we then develop an incremental one, a sliding-window based one, and finally one that mines closed trees adaptively from data streams. We use these methods to develop classification methods for tree data streams.Postprint (published version

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic
    corecore