229,263 research outputs found

    Investigation on advanced image search techniques

    Get PDF
    Content-based image search for retrieval of images based on the similarity in their visual contents, such as color, texture, and shape, to a query image is an active research area due to its broad applications. Color, for example, provides powerful information for image search and classification. This dissertation investigates advanced image search techniques and presents new color descriptors for image search and classification and robust image enhancement and segmentation methods for iris recognition. First, several new color descriptors have been developed for color image search. Specifically, a new oRGB-SIFT descriptor, which integrates the oRGB color space and the Scale-Invariant Feature Transform (SIFT), is proposed for image search and classification. The oRGB-SIFT descriptor is further integrated with other color SIFT features to produce the novel Color SIFT Fusion (CSF), the Color Grayscale SIFT Fusion (CGSF), and the CGSF+PHOG descriptors for image category search with applications to biometrics. Image classification is implemented using a novel EFM-KNN classifier, which combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN) decision rule. Experimental results on four large scale, grand challenge datasets have shown that the proposed oRGB-SIFT descriptor improves recognition performance upon other color SIFT descriptors, and the CSF, the CGSF, and the CGSF+PHOG descriptors perform better than the other color SIFT descriptors. The fusion of both Color SIFT descriptors (CSF) and Color Grayscale SIFT descriptor (CGSF) shows significant improvement in the classification performance, which indicates that various color-SIFT descriptors and grayscale-SIFT descriptor are not redundant for image search. Second, four novel color Local Binary Pattern (LBP) descriptors are presented for scene image and image texture classification. Specifically, the oRGB-LBP descriptor is derived in the oRGB color space. The other three color LBP descriptors, namely, the Color LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), and the CGLF+PHOG descriptors, are obtained by integrating the oRGB-LBP descriptor with some additional image features. Experimental results on three large scale, grand challenge datasets have shown that the proposed descriptors can improve scene image and image texture classification performance. Finally, a new iris recognition method based on a robust iris segmentation approach is presented for improving iris recognition performance. The proposed robust iris segmentation approach applies power-law transformations for more accurate detection of the pupil region, which significantly reduces the candidate limbic boundary search space for increasing detection accuracy and efficiency. As the limbic circle, which has a center within a close range of the pupil center, is selectively detected, the eyelid detection approach leads to improved iris recognition performance. Experiments using the Iris Challenge Evaluation (ICE) database show the effectiveness of the proposed method

    Context-aware person identification in personal photo collections

    Get PDF
    Identifying the people in photos is an important need for users of photo management systems. We present MediAssist, one such system which facilitates browsing, searching and semi-automatic annotation of personal photos, using analysis of both image content and the context in which the photo is captured. This semi-automatic annotation includes annotation of the identity of people in photos. In this paper, we focus on such person annotation, and propose person identiïŹcation techniques based on a combination of context and content. We propose language modelling and nearest neighbor approaches to context-based person identiïŹcation, in addition to novel face color and image color content-based features (used alongside face recognition and body patch features). We conduct a comprehensive empirical study of these techniques using the real private photo collections of a number of users, and show that combining context- and content-based analysis improves performance over content or context alone

    Deep Video Color Propagation

    Full text link
    Traditional approaches for color propagation in videos rely on some form of matching between consecutive video frames. Using appearance descriptors, colors are then propagated both spatially and temporally. These methods, however, are computationally expensive and do not take advantage of semantic information of the scene. In this work we propose a deep learning framework for color propagation that combines a local strategy, to propagate colors frame-by-frame ensuring temporal stability, and a global strategy, using semantics for color propagation within a longer range. Our evaluation shows the superiority of our strategy over existing video and image color propagation methods as well as neural photo-realistic style transfer approaches.Comment: BMVC 201

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    Image segmentation and feature extraction for recognizing strokes in tennis game videos

    Get PDF
    This paper addresses the problem of recognizing human actions from video. Particularly, the case of recognizing events in tennis game videos is analyzed. Driven by our domain knowledge, a robust player segmentation algorithm is developed real video data. Further, we introduce a number of novel features to be extracted for our particular application. Different feature combinations are investigated in order to find the optimal one. Finally, recognition results for different classes of tennis strokes using automatic learning capability of Hidden Markov Models (HMMs) are presented. The experimental results demonstrate that our method is close to realizing statistics of tennis games automatically using ordinary TV broadcast videos

    Real-time food intake classification and energy expenditure estimation on a mobile device

    Get PDF
    © 2015 IEEE.Assessment of food intake has a wide range of applications in public health and life-style related chronic disease management. In this paper, we propose a real-time food recognition platform combined with daily activity and energy expenditure estimation. In the proposed method, food recognition is based on hierarchical classification using multiple visual cues, supported by efficient software implementation suitable for realtime mobile device execution. A Fischer Vector representation together with a set of linear classifiers are used to categorize food intake. Daily energy expenditure estimation is achieved by using the built-in inertial motion sensors of the mobile device. The performance of the vision-based food recognition algorithm is compared to the current state-of-the-art, showing improved accuracy and high computational efficiency suitable for realtime feedback. Detailed user studies have also been performed to demonstrate the practical value of the software environment
    • 

    corecore