2 research outputs found

    Designing and modeling of a multi-agent adaptive learning system (MAALS) using incremental hybrid case-based reasoning (IHCBR)

    Get PDF
    Several researches in the field of adaptive learning systems has developed systems and techniques to guide the learner and reduce cognitive overload, making learning adaptation essential to better understand preferences, the constraints and learning habits of the learner. Thus, it is particularly advisable to propose online learning systems that are able to collect and detect information describing the learning process in an automatic and deductive way, and to rely on this information to follow the learner in real time and offer him training according to his dynamic learning pace. This article proposes a multi-agent adaptive learning system to make a real decision based on a current learning situation. This decision will be made by performing a hypride cycle of the Case-Based Reasonning approach in order to follow the learner and provide him with an individualized learning path according to Felder Silverman learning style model and his learning traces to predict his future learning status. To ensure this decision, we assign at each stage of the Incremental Hybrid Case-Based Reasoning at least one active agent performing a particular task and a broker agent that collaborates between the different agents in the system

    Hybrid approach of the fuzzy C-Means and the K-Nearest neighbors methods during the retrieve phase of dynamic case based reasoning for personalized Follow-up of learners in real time

    Get PDF
    The goal of adaptive learning systems is to help the learner achieve their goals and guide their learning. These systems make it possible to adapt the presentation of learning resources according to learners' needs, characteristics and learning styles, by offering them personalized courses. We propose an approach to an adaptive learning system that takes into account the initial learning profile based on Felder Silverman's learning style model in order to propose an initial learning path and the dynamic change of his behavior during the learning process using the Incremental Dynamic Case Based Reasoning approach to monitor and control its behavior in real time, based on the successful experiences of other learners, to personalize the learning. These learner experiences are grouped into homogeneous classes at the behavioral level, using the Fuzzy C-Means unsupervised machine learning method to facilitate the search for learners with similar behaviors using the supervised machine learning method K- Nearest Neighbors
    corecore