12,220 research outputs found

    Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises

    Get PDF
    The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    Artificial intelligence in histopathology image analysis for cancer precision medicine

    Get PDF
    In recent years, there have been rapid advancements in the field of computational pathology. This has been enabled through the adoption of digital pathology workflows that generate digital images of histopathological slides, the publication of large data sets of these images and improvements in computing infrastructure. Objectives in computational pathology can be subdivided into two categories, first the automation of routine workflows that would otherwise be performed by pathologists and second the addition of novel capabilities. This thesis focuses on the development, application, and evaluation of methods in this second category, specifically the prediction of gene expression from pathology images and the registration of pathology images among each other. In Study I, we developed a computationally efficient cluster-based technique to perform transcriptome-wide predictions of gene expression in prostate cancer from H&E-stained whole-slide-images (WSIs). The suggested method outperforms several baseline methods and is non-inferior to single-gene CNN predictions, while reducing the computational cost with a factor of approximately 300. We included 15,586 transcripts that encode proteins in the analysis and predicted their expression with different modelling approaches from the WSIs. In a cross-validation, 6,618 of these predictions were significantly associated with the RNA-seq expression estimates with FDR-adjusted p-values <0.001. Upon validation of these 6,618 expression predictions in a held-out test set, the association could be confirmed for 5,419 (81.9%). Furthermore, we demonstrated that it is feasible to predict the prognostic cell-cycle progression score with a Spearman correlation to the RNA-seq score of 0.527 [0.357, 0.665]. The objective of Study II is the investigation of attention layers in the context of multiple-instance-learning for regression tasks, exemplified by a simulation study and gene expression prediction. We find that for gene expression prediction, the compared methods are not distinguishable regarding their performance, which indicates that attention mechanisms may not be superior to weakly supervised learning in this context. Study III describes the results of the ACROBAT 2022 WSI registration challenge, which we organised in conjunction with the MICCAI 2022 conference. Participating teams were ranked on the median 90th percentile of distances between registered and annotated target landmarks. Median 90th percentiles for eight teams that were eligible for ranking in the test set consisting of 303 WSI pairs ranged from 60.1 µm to 15,938.0 µm. The best performing method therefore has a score slightly below the median 90th percentile of distances between first and second annotator of 67.0 µm. Study IV describes the data set that we published to facilitate the ACROBAT challenge. The data set is available publicly through the Swedish National Data Service SND and consists of 4,212 WSIs from 1,153 breast cancer patients. Study V is an example of the application of WSI registration for computational pathology. In this study, we investigate the possibility to register invasive cancer annotations from H&E to KI67 WSIs and then subsequently train cancer detection models. To this end, we compare the performance of models optimised with registered annotations to the performance of models that were optimised with annotations generated for the KI67 WSIs. The data set consists of 272 female breast cancer cases, including an internal test set of 54 cases. We find that in this test set, the performance of both models is not distinguishable regarding performance, while there are small differences in model calibration

    EEG analytics for early detection of autism spectrum disorder: a data-driven approach

    Get PDF
    Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.This research was supported by National Institute of Mental Health (NIMH) grant R21 MH 093753 (to WJB), National Institute on Deafness and Other Communication Disorders (NIDCD) grant R21 DC08647 (to HTF), NIDCD grant R01 DC 10290 (to HTF and CAN) and a grant from the Simons Foundation (to CAN, HTF, and WJB). We are especially grateful to the staff and students who worked on the study and to the families who participated. (R21 MH 093753 - National Institute of Mental Health (NIMH); R21 DC08647 - National Institute on Deafness and Other Communication Disorders (NIDCD); R01 DC 10290 - NIDCD; Simons Foundation)Published versio

    Machine Learning in Lithium-Ion Battery:Applications, Challenges, and Future Trends

    Get PDF
    Machine Learning has garnered significant attention in lithium-ion battery research for its potential to revolutionize various aspects of the field. This paper explores the practical applications, challenges, and emerging trends of employing Machine Learning in lithium-ion battery research. Delves into specific Machine Learning techniques and their relevance, offering insights into their transformative potential. The applications of Machine Learning in lithium-ion-battery design, manufacturing, service, and end-of-life are discussed. The challenges including data availability, data preprocessing and cleaning challenges, limited sample size, computational complexity, model generalization, black-box nature of Machine Learning models, scalability of the algorithms for large datasets, data bias, and interdisciplinary nature and their mitigations are also discussed. Accordingly, by discussing the future trends, it provides valuable insights for researchers in this field. For example, a future trend is to address the challenge of small datasets by techniques such as Transfer Learning and N-shot Learning. This paper not only contributes to our understanding of Machine Learning applications but also empowers professionals in this field to harness its capabilities effectively.</p
    corecore