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Abstract 
In recent years, there have been rapid advancements in the field of computational 

pathology. This has been enabled through the adoption of digital pathology 

workflows that generate digital images of histopathological slides, the publication 

of large data sets of these images and improvements in computing infrastructure. 

Objectives in computational pathology can be subdivided into two categories, 

first the automation of routine workflows that would otherwise be performed by 

pathologists and second the addition of novel capabilities. This thesis focuses on 

the development, application, and evaluation of methods in this second category, 

specifically the prediction of gene expression from pathology images and the 

registration of pathology images among each other.  

In Study I, we developed a computationally efficient cluster-based technique to 

perform transcriptome-wide predictions of gene expression in prostate cancer 

from H&E-stained whole-slide-images (WSIs). The suggested method 

outperforms several baseline methods and is non-inferior to single-gene CNN 

predictions, while reducing the computational cost with a factor of approximately 

300. We included 15,586 transcripts that encode proteins in the analysis and 

predicted their expression with different modelling approaches from the WSIs. In 

a cross-validation, 6,618 of these predictions were significantly associated with 

the RNA-seq expression estimates with FDR-adjusted p-values <0.001. Upon 

validation of these 6,618 expression predictions in a held-out test set, the 

association could be confirmed for 5,419 (81.9%). Furthermore, we demonstrated 

that it is feasible to predict the prognostic cell-cycle progression score with a 

Spearman correlation to the RNA-seq score of 0.527 [0.357, 0.665].  

The objective of Study II is the investigation of attention layers in the context of 

multiple-instance-learning for regression tasks, exemplified by a simulation study 

and gene expression prediction. We find that for gene expression prediction, the 

compared methods are not distinguishable regarding their performance, which 

indicates that attention mechanisms may not be superior to weakly supervised 

learning in this context.  

Study III describes the results of the ACROBAT 2022 WSI registration challenge, 

which we organised in conjunction with the MICCAI 2022 conference. Participating 

teams were ranked on the median 90th percentile of distances between 

registered and annotated target landmarks. Median 90th percentiles for eight 

teams that were eligible for ranking in the test set consisting of 303 WSI pairs 



ranged from 60.1 µm to 15,938.0 µm. The best performing method therefore has a 

score slightly below the median 90th percentile of distances between first and 

second annotator of 67.0 µm.  

Study IV describes the data set that we published to facilitate the ACROBAT 

challenge. The data set is available publicly through the Swedish National Data 

Service SND and consists of 4,212 WSIs from 1,153 breast cancer patients.  

Study V is an example of the application of WSI registration for computational 

pathology. In this study, we investigate the possibility to register invasive cancer 

annotations from H&E to KI67 WSIs and then subsequently train cancer detection 

models. To this end, we compare the performance of models optimised with 

registered annotations to the performance of models that were optimised with 

annotations generated for the KI67 WSIs. The data set consists of 272 female 

breast cancer cases, including an internal test set of 54 cases. We find that in this 

test set, the performance of both models is not distinguishable regarding 

performance, while there are small differences in model calibration. 
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1 Introduction 
The histopathological assessment of tissue samples is an essential component of 

both biomedical research, as well as clinical routine to establish diagnosis and 

prognosis of many diseases such as cancer. Historically, this assessment was 

based on the analysis of stained tissue slides with a microscope. However, during 

the last decade, digital pathology methods have been established as clinically 

non-inferior and found broader dissemination into pathology departments. In 

digital pathology workflows, the direct examination of slides with a microscope is 

at least partially replaced through scanning the slides and their inspection on 

screens. While this has potential benefits such as the possibility of remote 

consultations and the analysis of digital images with specialised software tools, 

the broad adoption of digital pathology has been slow. This might e.g. be due to 

high initial costs of slide scanners and unclear cost or time saving benefits.  

In recent years, deep learning based on convolutional neural networks (CNNs), 

often also referred to as artificial intelligence (AI), has substantially advanced 

many areas of research and technology that require the analysis of complex non-

tabular data. This data includes time series, images, tomography volumes and 

videos. The analysis of histopathology images with these tools and the application 

of current image processing techniques are often referred to as computational 

pathology. Computational pathology has the potential to both automate routine 

diagnostics, as well as to add new capabilities for pathological analysis. Particularly 

the latter may facilitate broader access to precision diagnostics.  

Breast and prostate cancer are among the most common cancers both globally 

and in Sweden. For both of these cancers, there are several diagnostic tests that 

are based on the expression of genes that are associated with the respective 

cancer. These can provide prognostic and predictive information and guide 

treatment decisions. However, due to costs and complex logistics, these tests are 

not available to all patients, particularly globally. One of the aims of this thesis is 

therefore the development, application and evaluation of methods that predict 

gene expression from pathology images.  

For many diseases, it is furthermore common to not only create a single diagnostic 

slide from a tissue sample but multiple, which are stained with different chemicals 

to reveal different types of clinically relevant information. However, during sample 

preparation, tissue can deform easily before it is scanned. The alignment of 

corresponding tissue regions to each other in images is referred to as registration. 



An alignment of pathology images is desirable to facilitate research applications 

such as stain-guided learning and 3D-reconstruction. Clinical use cases include 

the identification of regions of interest for biomarker scoring and the investigation 

of resection margins with multiple stains. The registration of pathology images is 

particularly challenging due to the large image sizes and non-linear deformations 

of the tissue. This thesis therefore also aims at the application and evaluation of 

image registration methods for computational pathology.  

The overarching goal of this thesis is therefore the development, application and 

evaluation of computational pathology methods that expand the capabilities of 

current pathological diagnostics. This has the potential to advance the quality and 

access to precision diagnostics, with the associated potential benefits for 

patients. 
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2 Background 

2.1 Cancer 

The term cancer refers to a set of diseases that are characterised through 

uncontrollable growth and spread of cells. The malignant tumours of solid cancers 

differ from benign tumours in other neoplastic diseases through their capability 

to invade surrounding tissue. Hanahan and Weinberg suggested eight hallmarks of 

cancer and two enabling capabilities [1], [2], which provide a common model to aid 

in understanding this complex disease. These eight hallmarks of cancer cells are 

sustained proliferative signalling, the evasion of growth suppressors, replicative 

immortality, the activation of invasion and metastasis, the induction of 

angiogenesis and resistance to cell death, as well as the avoidance of immune 

destruction and the deregulation of cellular energetics. The two enabling 

characteristics are tumour-promoting inflammation and genome instability and 

mutation. Cancer is often referred to as a genetic disease, which is caused by 

mutations within a cell’s DNA. These mutations can be inherited or occur during 

an organism’s life span. While modern lifestyle factors such as exercise, diet, 

alcohol, and tobacco consumption, are associated with increases (or decreases) 

in an individual’s risk of cancer, it is not only a disease that occurs in modern 

societies. One of the earliest samples of malignant neoplastic disease in a human 

ancestor dates back 1.6 to 1.8 million years. This hominin metatarsal (bone of the 

forefoot) specimen found in South Africa contains a malignant osteosarcoma [3]. 

Presently, cancer is a leading cause of death globally, with an estimated 10 million 

or one out of six deaths attributed to it [4]. During cancer diagnosis, solid cancers 

are often described with the TNM staging system, where T captures the size and 

extent of the primary tumour, N the number of local lymph nodes that contain 

metastases and M whether there are distant metastases. Besides staging, cancer 

diagnostics involves a histopathological assessment, which follows criteria that 

are specific to the tissue of origin of the tumour.  

2.1.1 Histopathological Assessment 

Histopathological assessment is a key component in cancer diagnostics both to 

establish a cancer diagnosis, characterise the cancer, as well as to guide 

treatment decisions. It requires a multi-step sample preparation process, which 

can vary between laboratories and therefore lead to inter-laboratory variability. 



Once a tissue sample is obtained e.g. through a core needle biopsy or surgery, it 

is typically preserved by fixation in formalin or formaldehyde. This aims to 

preserve morphological structures and molecules. The sample is then embedded 

in a paraffin wax block. From this block, slices with a thickness of typically 5-15 

micrometres can be cut. These are then mounted on glass slides and the wax is 

removed with heat and solvents such as xylene. Subsequently, a stain can be 

applied. The most common stain is haematoxylin and eosin (H&E). Haematoxylin 

is positively charged and binds to the negatively charged cell nuclei, colouring 

them in blue-purple. The negatively charged eosin binds to the positively charged 

extracellular matrix and cytoplasm, staining them pink. Other structures may bind 

both chemicals in varying proportions, leading to intermediate colours. This allows 

pathologists to identify morphological patterns and the distributions of cells in a 

tissue sample. H&E staining is the de-facto standard for morphological 

assessment of histological samples. Another important staining technique is 

immunohistochemistry (IHC). IHC staining is based on antibodies that bind to 

specific antigens, typically proteins. Stains that bind to these antibodies can then 

be used to visualise the presence and distribution of these specific proteins. This 

allows e.g. to assess whether a cancer-related protein is overexpressed, which can 

indicate specific targeted treatments that interact with this protein or provide 

information on the proliferation rate of the cancer cells.  

2.2 Breast Cancer 

Breast cancer refers to tumours that develop from the epithelial cells of the breast. 

Precancerous lesions, also referred to as carcinoma in situ, are categorized as 

ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS), depending on 

their site of origin. When the tumour invades the surrounding tissue, it is 

considered invasive cancer (IC), signifying a more advanced stage of the disease. 

The majority of breast cancers are adenocarcinomas, originating from the ducts 

or lobules of the breast, and are classified as either ductal carcinoma or lobular 

carcinoma. Ductal carcinomas account for 70-75% and lobular carcinomas for 12-

15% of breast cancers. The remaining cases can be categorised into 18 further rare 

histological subtypes [5]. 

2.2.1 Epidemiology 

With an estimated 2.3 million new cases in 2020, breast cancer has now 

surpassed lung cancer as the most commonly diagnosed cancer globally [4]. 

Furthermore, breast cancer is the cancer with the highest age-standardised 
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incidence rate, with 47.8 cases per 100,000 person-years [4]. In Sweden, there 

were approximately 7,500 newly diagnosed breast cancer cases and 1,500 deaths 

attributable to the disease in 2020 [4]. While the incidence of breast cancer has 

been increasing in Sweden, the mortality rate associated with it has been on a 

decreasing trend, which might be attributed to the implementation of population-

wide screening programs and improved treatments. Reproductive and hormonal 

risk factors include low age at menarche, high age at menopause, high age at first 

birth, low number of children, less breastfeeding, menopausal hormone therapy, 

and oral contraception. Lifestyle risk factors include alcohol consumption, excess 

body weight and physical inactivity [6]. While some studies found an association 

between smoking and breast cancer, particularly in pre-menopausal women, 

further research is needed to firmly establish smoking as a risk factor [7].  

2.2.2 Screening and Diagnosis 

Since 1997, mammography screening has been recommended for women aged 

between 40 and 74 in Sweden. The Swedish national standardised care workflow, 

as depicted in Figure 1, is initiated either if the patient seeks care due to symptoms 

or due to a suspicious lesion that is detected during screening. If there is a well-

founded suspicion of breast cancer, a triple-diagnostic process is initiated. This 

process includes clinical examination, imaging diagnostics, and morphological 

diagnostics of biopsy and surgical specimens.  

2.2.3 Histopathological Assessment 

The histopathological assessment of biopsy and resection specimen is a key 

element of the diagnostic process of breast cancer that guides decisions, 

including everything from neoadjuvant treatment to surgery and adjuvant 

treatments. Postoperative pathological assessments should include the number, 

location and maximum diameter of resected tumours, the number of removed 

lymph nodes and how many of these were positive for metastases, an evaluation 

of resection margins that includes the minimum distance of the margin, vascular 

invasion, histological type, grade, and biomarker statuses [5]. There are different 

grading systems for carcinoma in situ and invasive breast cancer. Both grading 

systems are subject to inter-assessor variability, but particularly grading of in situ 

carcinomas has only moderate reproducibility [9]. Grading of invasive cancer in 

Sweden follows the guidelines of the Nottingham grading system [10]. 

 



 

Figure 1. National Swedish standardised care workflow for breast cancer, translated from [8]. 
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2.2.3.1 Nottingham Histological Grade 

Breast cancer grading can be performed on H&E-stained FFPE-fixated tissue 

samples from biopsy or surgery. Determining the Nottingham Histological Grade 

(NHG) consists of the assessment of three subcomponents: mitotic count, nuclear 

pleomorphism and tubular formation. Each of these subcomponents is scored 

from 1 to 3. The mitotic count measures the number of mitoses within 10 high 

power fields. These high-power fields should be selected from the regions with 

the highest density of mitoses within the tumour. Cut-offs on the number of 

mitoses depend on the field area [10]. The selection of these power fields can lead 

to inter-assessor variability. Scoring nuclear pleomorphism is based on an 

assessment of nuclear atypia, which refers to differences between cancer and 

normal cells. This is based on the size, shape, vesicularity and presence of nucleoli 

with normal epithelium and should be performed in less differentiated tumour 

regions. Small, regular uniform cells are assigned a score of 1, a moderate increase 

in size and variability a score of 2 and marked variations a score of 3 [10]. Tubular 

formation assesses the proportion of cancer cells that follow tube-shaped 

structures with clear central lumina. If more than 75% of cells are arranged in 

tubule, a score of 1 is assigned, a score of 2 is indicated if 10-75% of cells display 

tubule formation and a score of 3 if less than 10% of cells follow these structures 

[10]. The final NHG is then based on a cut-off applied to the sum of the subgrades 

and also ranges from 1 to 3. Sums of the subcomponents of 3 to 5 are assigned 

NHG 1, 6 or 7 NHG 2 and 8 or 9 NHG 3. Higher NHGs are associated with worse 

prognosis. While the NHG system is well established, the proportions of grades 

can vary substantially between pathology departments in Sweden, indicating 

clinically relevant inter-laboratory variability that affects treatment decisions [11]. 

Based on a study of the Swedish National Breast Cancer Quality Registry (NKBC), 

out of 38,076 invasive breast cancer cases studied, 21.4% were assessed as NHG 

1, 51.4% as NHG 2 and 27.2% as NHG 3, with information missing in 1.3% of cases [11]. 

2.2.3.2 Biomarker Assessment 

Biomarkers in breast cancer are assessed mainly through IHC staining, either of 

biopsy or resection specimen. While it is possible to perform the assessment on 

samples collected with core needle biopsies, it is recommended to repeat the 

assessment with surgical specimen after resection due to intra-tumour 

heterogeneity [5], [12]. There are four biomarkers that are routinely assessed in 

Sweden. These are the estrogen receptor (ER), the progesterone receptor (PGR), 



the human epidermal growth factor receptor 2 (HER2) and Ki67, which is a marker 

of proliferation.  

There are two types of estrogen receptors, alpha (ERα) and beta (ERβ), which are 

both nuclear receptors that are activated by the sex hormone estrogen. ERα 

stimulates cell proliferation in breast tissue [13]. It is often present in early-stage 

breast cancer. ER receptor status evaluation is done through IHC staining. If at 

least 10% of cancer cells within a tumour are positively stained, the cancer is 

considered ER-positive, which is the case in 86.7-89.2% of breast cancer cases 

based on the NKBC [11]. Tumours with 1-10% positively stained cells are considered 

low-positive. ER-positivity is predictive for benefit from endocrine therapy [14].  

The progesterone receptor PGR stimulates proliferation through modulation of ER 

activity [15]. Similar to ER, it is assessed with IHC and the same cut-off at 10% as 

with ER applies. It is a prognostic marker in ER-positive breast cancers [14]. In the 

investigation in [11], 70.9-74.8% of breast cancer cases in the NKBC were PGR 

positive.  

The human epidermal growth factor receptor 2, HER2, is a receptor on breast cells 

whose overexpression leads to uncontrolled cell growth and division. HER2 status 

is primarily assessed with IHC, yielding a score from 0 to 3+. The scores 0 to 1+ are 

considered HER2-negative. A score of 3+ is considered HER2 positive, whereas 2+ 

is considered borderline. In this case, the HER2 status should be confirmed with 

silver in-situ hybridisation (SISH) or fluorescence in-situ hybridisation (FISH). 

HER2-positivity is associated with a worse prognosis if untreated and an indicator 

for HER2-targeted therapies such as Trastuzumab [16]. Based on data from the 

NKBC, 12.4-13.8% of breast cancer cases were assessed as HER2 positive [11].  

KI67 is a nuclear protein that is associated with cell proliferation and RNA 

transcription. It is expressed in active phases of the cell cycle, but absent during 

quiescence. It is quantified via IHC staining and reported as the percentage of 

positively stained cells, either in hotspot regions or the entire invasive cancer 

region, depending on local guidelines. In Sweden, the recommendation recently 

changed from hotspot-based scoring to whole-tumour scoring [17]. Currently, the 

clinical utility of Ki67 is limited due to limitations in its analytical validity, which 

requires robust standards both for sample preparation and scoring [18], [19]. The 

most recent Swedish guidelines consider a cancer to have low KI67 expression if 

5% or less of cells are positively stained and as highly expressed if 30% or more 

are positively stained, with a corresponding intermediate range of positively 
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stained cells that requires further diagnostics for risk stratification [8]. The median 

KI67 proliferation index is 22% in the NKBC [11]. Based on the statuses of these 

biomarkers, it is possible to assign cases to subtypes, as shown in Figure 2. 

 

Figure 2. Overview of breast cancer subtypes, adapted and translated from the Swedish national care 
guidelines for breast cancer [20]. These guidelines also indicate that gene expression profiling should be 
performed for postmenopausal women with NHG2 ER-positive and HER2-negative cancer if there is 
uncertainty regarding the risk classification of the cancer. Furthermore, gene expression profiling can be 
considered if only IHC indicates a classification as Luminal-B rather than Luminal-A and therefore the need 
for chemotherapy. White boxes indicate ESMO treatment recommendations [5]. 

2.2.4 Molecular Profiling 

There are several prognostic or predictive diagnostic tests that use gene 

expression profiling to further stratify breast cancer patients. These include 

MammaPrint by Agendia, the Oncotype DX Recurrence Score by Genomic Health, 

the Prosigna PAM50 by NanoString Technologies, the Breast Cancer Index by 

Biotheranostics and Endopredict by Myriad Genetics. Except for MammaPrint, all 

these tests are intended for ER-positive early disease [5]. The Prosigna test uses 

the expression of 50 genes, the PAM50 gene panel, to determine the molecular 

subtype of a cancer sample, as well as a risk-of-recurrence score. These subtypes 

are Luminal-A, Luminal-B, HER2-enriched, basal-like and normal-like [21]. Current 

Swedish national care guidelines recommend this test for postmenopausal 

women whose histopathological assessment resulted in a NHG 2 classification 

with an intermediate KI67 score, ER-positive and HER2-negative IHC if there is 

uncertainty regarding their risk classification. Furthermore, it can be considered if 



IHC is the only indication for chemotherapy [8]. As shown in Figure 2, it is also 

possible to approximate these subtypes based on the biomarker statuses. 

Another common gene expression-based test is the Oncotype DX by Exact 

Sciences. It computes a recurrence score based on the expression of 21 genes. It 

has been shown to predict the risk of distant recurrence in ER-positive node-

negative patients treated with tamoxifen [22]. 

2.2.5 Treatment 

There is a variety of treatment options for breast cancer. The selection of a 

specific treatment depends on the size and location of the primary tumour, the 

number of lesions, the number of lymph nodes involved, histopathological grade, 

biomarkers, gene expression if available, menopausal status, as well as the 

patient’s health status and preferences. It is recommended to take age into 

consideration only in the context of these other factors and not as the 

determining one. For premenopausal patients, fertility preservation may also be 

taken into consideration [5]. There are local and systemic treatments. Local 

treatments include surgical resection of tumours, mastectomy, and radiotherapy. 

Systemic treatments include chemotherapy (ChT), endocrine therapy (ET) and 

HER2 targeted therapies (anti-Her2), as well as further recently developed 

targeted therapies [23]. The selection of the appropriate systemic treatment can 

be based on the breast cancer subtype, as shown in Figure 2, which indicates the 

European Society for Medical Oncology (ESMO) treatment recommendation for 

each subtype [5]. 

2.3 Prostate Cancer 

Prostate cancer refers to invasive tumour cell growth in the prostate, which is a 

walnut-sized gland that is a part of the male reproductive system. The prostate 

produces the seminal fluid, which sustains and transports sperm. More than 95% 

of prostate cancers are adenocarcinomas, which are cancers that originate from 

epithelial cells of glandular tissue structures.  

2.3.1 Epidemiology 

Globally, there were 1.4 million new prostate cancer cases in 2020, and prostate 

cancer is the most common cancer among men in Europe and North America. 

Northern Europe is the region with the globally highest age-standardised prostate 

cancer incidence of 83.4 per 100,000 person-years [4]. The high incidence of 

prostate cancer in Northern Europe is partially attributable to the age structure of 
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the populations, as well as to rigorous screening guidelines that allow for the 

detection even of early-stage tumours [24]. In Sweden, there are approximately 

11,000 prostate cancer cases and 2,400 deaths annually, which is the third highest 

age-standardised incidence in Europe [25]. The aetiology of prostate cancer 

remains an active area of research. Established risk factors include age, ethnicity 

(particularly western African ancestry) and a family history of the disease. 

Furthermore, some mutations such as BRCA1 and BRCA2, as well as conditions 

such as Lynch syndrome are associated with an increased risk of prostate cancer. 

Lifestyle risk factors may include smoking, excess body weight and nutritional 

factors [4]. 

2.3.2 Screening and Diagnosis 

Currently, the Swedish National Board of Health and Welfare does not recommend 

population-based prostate cancer screening to avoid overdiagnosis and 

treatment. However, there are currently several ongoing studies that investigate 

the effect of inviting all men in specific regions and birth cohorts for screening, 

which is referred to as organised prostate cancer testing. Depending on the 

outcome of these studies, this may result in a future national screening 

programme. For men with at least two first-degree relatives with a history of 

prostate cancer, testing is already recommended from the age of 40 [26]. Prostate 

cancer diagnosis is either initiated based on a palpable nodule in a digital rectal 

exam (DRE) or elevated prostate specific antigen (PSA) levels. A PSA serum value 

of 3 µg/l for men below 70 years of age, 5 µg/l for men between the age of 70 and 

80 or higher than 7 µg/l for men older than 80 years is considered elevated. If any 

of these criteria are met, current guidelines recommend magnetic resonance 

imaging (MRI) for most patients. Based on the findings of DRE, PSA, and MRI, a 

prostate biopsy might be recommended. Prostate cancer biopsies are either 

systemic core needle biopsies or guided through transrectal ultrasound or MRI 

[26]. There are several blood, urine and tissue tests that can be used in order to 

reduce unnecessary biopsies, e.g. the Stockholm3 test is currently investigated in 

regional projects [27], [28]. 

2.3.3 Histopathological Assessment 

Histopathological assessment of prostate biopsies primarily serves the purpose 

of establishing a cancer diagnosis and grading the cancer areas to guide 

treatment decisions. Furthermore, the extent of the cancer might also be 



estimated based on the biopsies, however, there is no consensus for a 

standardised approach. 

2.3.3.1 Gleason Grading 

The Gleason grading system categorises areas of prostate cancer cells in prostate 

biopsies into five grades [29]. These grades progress in severity from grade 1 with 

well differentiated cells to grade 4 and 5, which are considered poorly 

differentiated or anaplastic, as shown in Figure 3. Tumours with patterns of grade 

4 and 5 are associated with a higher risk of cancer death compared to tumours 

with a pattern of grade 3 [30]. Typically, the most prevalent and second most 

prevalent or highest-grade patterns are reported and can be summed to obtain 

the Gleason sum. The International Society of Urological Pathology (ISUP) only 

considers Gleason grade patterns 3-5 as cancerous, whereas grades 1 and 2 are 

considered benign [31]. Assigned Gleason grades can diverge even among expert 

pathologists [32]. This inter-assessor variability can lead to under- or 

overtreatment. To further standardise prostate cancer grading, the ISUP also 

suggested the ISUP grading system, which is based on a combined grade of 

primary and secondary Gleason grades [33]. 

 

Figure 3. Schematic of tissue patterns that exemplify Gleason grades 1 to 5. Grade 1 and 2 are not considered 
cancerous, as opposed to grade 3 to 5. A higher grade is associated with worse prognosis.
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2.3.4 Molecular Profiling 

To guide treatment decisions and to reduce under- and overtreatment, multiple 

gene expression-based prostate cancer assays have been proposed. These 

assays quantify the expression of cancer-associated genes to risk-stratify 

patients. The cell-cycle progression (CCP) score developed by Polaris is the mean 

mRNA expression of 31 genes based on samples either from biopsies or 

prostatectomies. The CCP is associated with disease aggressiveness, the 10-year 

risk of metastasis after therapy, the risk of recurrence after prostatectomy and 

the disease-specific mortality under conservative management [34]–[36]. Other 

gene expression-based tests for prostate cancer include the Decipher Biopsy and 

Decipher postoperative scores [37]–[39] and the Oncotype DX genomic prostate 

score [40]–[44]. However, these tests remain costly and are not standard of care 

in Sweden. 

2.3.5 Treatment 

Depending on the risk assessment of the cancer and the patient’s preference, 

there are several treatment options. These can be divided into conservative 

treatments, curative treatments, and non-curative life-prolonging treatments. 

Conservative treatments include active surveillance and watchful waiting. Active 

surveillance refers to an expectant management with frequent diagnostic 

investigations. Watchful waiting mainly relies on DREs and PSA testing [26]. 

Curative treatments include radical prostatectomy, which refers to the surgical 

removal of the prostate, and radiotherapy. Non curative treatments include 

hormone therapy, chemotherapy, and radiotherapy [26]. 

2.4 Digital and Computational Pathology 

In recent years, there has been an increasing digitisation of pathology 

departments. Digitisation in this context refers to scanning slides with tissue 

samples and their subsequent analysis on screens, as well as their storage in 

digital image archives. The first commercial slide scanner was designed in 1994. It 

was commonly referred to as BLISS (Bacus Laboratories Inc., Slide Scanner) [45]. 

With this scanner, it took approximately 24h to scan a single slide. The first 

software to view pathology images was initially based on a software for satellite 

image retrieval and processing, called Active Data Repository (ADR) [46]. It was 

first used for virtual microscopy in 1996 and used ADR for spatial data retrieval at 

varying magnifications, which was quickly adapted to support pre-computed 

image pyramids, which are still a key component for WSIs today [45]. Over the last 



two decades, there have been dramatic improvements regarding scanning speed 

and image quality, as well as in image storage and management systems. Today, 

several different companies produce WSI scanners that rely either on tile- or line-

based scanning. These scanners typically generate WSIs in proprietary formats 

[45]. Open source software tools such as OpenSlide [47] can convert between 

some of these formats and the open TIFF format. There is also an effort to 

standardise the formats of WSIs that are based on tiles in image pyramids by the 

Digital Imaging and Communications in Medicine (DICOM) standards committee 

[48]. Today, the most essential components of WSI scanners typically include 

digital cameras, some of which are connected to a microscope with one or several 

objective lenses, robotics to facilitate movement of samples, and computers for 

rudimentary image processing, such as region-of-interest (ROI) detection and 

focusing [45]. However, broad adoption of digital pathology was initially hindered 

by several factors. Besides high initial costs of WSI scanners, these included 

concerns regarding the accuracy of diagnoses based on WSIs and regulatory 

approval of scanners. By now, there is a multitude of studies that establish a high 

concordance between diagnoses based on the inspection of tissue samples with 

a microscope and WSIs. An overview of these studies is available in [49]. The first 

WSI scanner that was granted FDA approval was the IntelliSite Pathology Solution 

by Philips. This decision was based on a non-inferiority clinical trial [50]. Several 

other WSI scanners have received regulatory approval since. 

2.4.1 Computational Pathology 

The generation of WSIs in routine clinical workflows, or research environments, 

allows for the application of automated or semi-automated computer-based 

image analysis tools, which is referred to as computational pathology. Particularly 

the thousands of WSIs and linked clinical, genetic and outcome data that were 

published by The Cancer Genome Atlas (TCGA) research consortium [51] were 

instrumental for the development of computational pathology tools during recent 

years. Computational pathology tools are typically either based on classical image 

analysis techniques such as feature extraction and their subsequent analysis by 

machine learning models, or deep learning models that directly learn features from 

data. Classical feature extraction in this context is based on expert-designed 

features such as measures of area, size, shape, texture, colour, as well as spatial 

relationships and distributions of structures of interest. These structures include 

micro-anatomic objects such as cell nuclei and morphological structures such as 

glands or tissue areas. However, this approach is limited to human-conceivable 
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features. Furthermore, it is often more vulnerable to differences in sample 

preparation such as cutting, fixation and staining than deep learning models. 

Therefore, deep learning has replaced these classical image analysis techniques 

in almost all applications of computational pathology [45]. The objectives of 

computational pathology tools range from the segmentation or classification of 

micro-anatomic objects, morphologies, and tissue to the generation of WSI-level 

classifications or regressions. These objectives can be broadly assigned to two 

categories. The first aims to automate routine diagnostic workflows, such as 

cancer detection, typing, grading in H&E WSIs and biomarker scoring in WSIs of 

immunohistochemically stained tissue. This has the potential to decrease inter-

assessor variability and to reduce costs. The second category of tools aims to 

generate information that pathologists cannot obtain through visual assessment, 

such as the prediction of genetic alterations, outcomes, or treatment responses. 

Particularly this second category has the potential to contribute to the 

advancement and broad availability of precision medicine through image-based 

biomarkers, which can be cheaper and faster to generate than measurements of 

molecular biomarkers using e.g. DNA- or RNA-sequencing or other profiling 

methodologies. 

2.4.2 Whole-Slide-Image Registration 

WSI-registration is an active field of research within computational pathology that 

aims to align corresponding tissue regions between multiple WSIs from the same 

tissue specimen, as shown in Figure 4. Since tissue sections are mounted onto 

glass slides, the position and rotation of tissue even of consecutive sections on 

these glass slides and resulting WSIs will vary. Furthermore, the thickness of the 

sections only measures a few micrometres. Therefore, they are susceptible to 

deformations and tears. However, the alignment of these tissue regions allows 

combined analyses of information from H&E and IHC, which has applications both 

in research and diagnostics. In the research setting, this may be useful for stain-

guided learning, virtual staining, the analysis of multiplex stained histology, 3D 

reconstruction and for the transfer of annotations or predictions between WSIs. 

In the clinical context, this may be useful in order to identify e.g. invasive cancer 

during biomarker scoring or for the investigation of suspicious lesions at resection 

margins. WSI registration is a particularly challenging registration task due to the 

gigapixel scale of WSIs, differences in the appearance of different stains, changes 

in structure and morphology resulting from sample preparation, which can also 

introduce artefacts, tears, and deformations. WSI registration algorithms typically 



rely on extracting and matching features between WSIs or on optimising an 

intensity-based metric that quantifies the similarity between tissue regions [52]. 

Pre-processing steps often include tissue segmentation and histogram or colour 

matching between the WSIs of an image pair. In recent years, the application of 

deep learning both in the pre-processing and registration steps has become 

increasingly common. 

 

Figure 4. Example of an H&E WSI registered to an IHC WSI. 

2.5 Machine Learning 

Machine learning, often also referred to as Artificial Intelligence (AI), differs from 

classical optimization tasks in its objective. Optimization aims at solving a specific 

task given data optimally. Machine learning on the other hand aims at a transfer, 

in which the results from optimising a model on a training set are intended to 

approximate an optimal parametrization for unknown test data. The purpose of 

supervised machine learning is to find an approximation of a function that maps 

input data to outputs such that the error in these outputs as quantified by some 

loss function or metric is minimised. 

2.5.1 Artificial Neural Networks and Deep Learning 

Artificial neural networks are a type of machine learning model. The most basic 

form of an artificial neural network is a fully connected network (FCNN), which is 
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also referred to as multi-layer perceptron (MLP). Artificial neural networks consist 

of artificial neurons, also referred to as perceptrons [53], as depicted in Figure 5. 

 

Figure 5. Schematic of a perceptron in a) and an artificial neural network in b). 

MLPs are parametrized through their weights 𝑤 and biases 𝑏. Typically, each 

neuron in a layer has an input 𝑥 from all neurons in the previous layer and its 

activation is relayed as an input to all the neurons in the consecutive layer. The 

connections between these neurons are weighted with the weights 𝑤.   

Furthermore, the sum of all weighted inputs into a neuron is offset by a learnable 

bias 𝑏. After addition of this bias, an activation function 𝑔 is applied, which is often 

either a sigmoid function or the rectified linear unit (ReLU) function. The output of 

this function is the activation 𝑎, which is the input to the neurons of the 

subsequent layer. The number of layers and neurons in a network is typically 

optimised as a hyperparameter. Deep learning (DL) refers to a technique where a 

large number of consecutive model layers is used to approximate complex 

functions through increasing complexity of the representations of these layers. In 

recent years, machine learning and particularly deep learning has made significant 

contributions to almost all areas of research and technology. This was not as much 

driven by novel theories or models, but rather through increased availability of 

large-scale data sets and improving computing infrastructure at decreasing costs. 

Even convolutional neural networks (CNNs), which are now one of the most 

common types of neural networks for the analysis of data with an evenly spaced 

grid topology such as images, have been conceptualised much earlier. The first 

neural network that was referred to as a CNN was proposed in 1998 by LeCun et 



al. in [54]. A similar model, the neocognitron, had already been proposed by 

Fukushima et al. in 1980 in [55]. However, the publication by LeCun et al. in 1998 

met more favourable conditions due to improvements in computing infrastructure 

and more importantly, an immediate application with the automated identification 

of handwritten digits in post codes and bank checks. Back-propagation, the 

algorithm now ubiquitously used to optimise neural networks, was already 

proposed in 1986 by Rumelhart et al. [56]. 

2.5.2 Optimisation of Deep Neural Networks 

Loss functions are used in supervised machine learning to quantify the error 

between a prediction 𝑦' and the true label 𝑦 of a sample. Considering that the 

prediction 𝑦' is a function 𝑓(𝑥, 𝜃) of the model inputs 𝑥 and the model parameters 

𝜃, the loss 𝐿(𝑦', 𝑦) can be formulated as 𝐿(𝑥, 𝜃, 𝑦), which becomes 𝐿(𝜃) for a specific 

combination of input 𝑥 and label 𝑦. The model parameters 𝜃 are then updated 

based on this loss value. One or multiple loss functions can be applied. If multiple 

loss functions are used, the total loss is the weighted sum of the individual loss 

functions. These weights can be optimised as hyperparameters. It is common to 

add losses that do not directly aid the optimisation of the error between 

predictions and true labels but that are intended to aid generalisation to unseen 

data. The purpose of these losses is therefore to prevent overfitting the training 

data, which is referred to as regularisation. Figure 6 depicts an example of a 

decision boundary with and without regularisation.  

 

Figure 6. Decision boundary for different values of L2 regularisation for an artificial neural network. Blue and 
red dots indicate samples from two different classes. The lower right number in each plot indicates the 
accuracy for the respective L2 regularisation.  

As can be seen, the decision boundary is smoother when regularisation is applied, 

which does not aid the prediction accuracy on the training data, but might be a 
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better decision rule on unseen test data. Common regularisations are 𝐿! and 𝐿" 

regularisation, based on the respective norm of the model parameters. Once the 

loss for a sample or set of samples has been computed, model parameters are 

updated based on the loss. In this context, this is typically phrased as the 

minimisation problem  

𝜃∗ = argmin 𝐿(𝜃) 

for a fixed input 𝑥, where 𝜃∗ refers to the optimal model parameters. Since the 

number of parameters of neural networks is often in the millions, this optimization 

problem is not solved analytically but numerically with gradient descent. Gradient 

descent is an iterative method to solve an optimization problem such that it 

converges at least to a local minimum. Its application requires the loss function to 

be locally differentiable with regards to the current model parameters 𝜃. 

Intuitively, gradient descent can be understood to modify the model parameters 

iteratively against the sign of the derivative of the loss. The parameter update can 

then be described as  

𝜃$ = 	𝜃 − 	𝜖∇%𝐿(𝜃) 

where 𝜃$ are the updated parameters and 𝜖 the step size, which is referred to as 

the learning rate in the context of machine learning. Particularly in deep learning, 

which is characterised by neural networks with many layers, it can be complex to 

compute the derivatives of the loss function for each parameter. The back-

propagation algorithm [56] can be used to efficiently compute local derivatives 

through a highly efficient order of computations. Local gradients are computed 

solely based on locally available information with the simplifying assumption that 

only the individual weight to be updated changes while all other weights are held 

constant. Depending on the size and type of training data, it is often not possible 

to compute the gradient for all samples in the data set simultaneously due to 

computing hardware limitations. In this case, the gradient is estimated based on a 

randomly sampled subset of the training data set, referred to as a batch. This 

method is then called stochastic gradient descent. A common problem of training 

deep models with gradient descent and backpropagation is that gradients may 

converge to zero (vanish) or diverge (explode). Besides the depth of deep learning 

models, this might be because the assumption of backpropagation that all 

parameters are constant during parameter updates except for the updated 

parameter is not met. A technique that alleviates this is batch normalisation, which 

was first proposed by Ioffe et al. in [57]. In batch normalisation, the activations and 



gradients are normalised to zero mean and unit variance, where the mean and 

standard deviation used for normalisation are learnable parameters that are 

updated based on the standard deviation and mean of batches that are passed 

through the network. This mean and standard deviation converge towards the 

mean and standard deviation of activations of the entire training data at the 

respective layer after passing a sufficient number of batches through the network. 

During CNN optimization, the average loss value for a pre-defined number of 

samples, referred to as an epoch, is monitored both for the training data and a 

tuning or validation data set. Model optimization is terminated when the loss on 

this validation data does not further improve for a specified number of epochs to 

avoid overfitting. 

2.5.3 Convolutional Neural Networks 

CNNs are a type of neural network that perform convolutions with learned filters 

on the input data in at least some of their layers. While there are graph-CNNs that 

can work with more complex input data, CNNs are typically applied to data that is 

structured in an evenly spaced grid, such as time series data, image data or videos. 

Convolutions can be expanded to an arbitrary number of dimensions, but the 

focus here will be on image data. RGB images are 3D matrices where one 

dimension corresponds to the width, one to the height, and one to the three colour 

channels red, green, and blue. The continuous one-dimensional convolution of two 

functions 𝑓(𝑡), 𝑔(𝑡) is denoted as 𝑓(𝑡) ∗ 𝑔(𝑡) and defined through  

𝑓(𝑡) ∗ 𝑔(𝑡) 	= 	 ; 𝑓(𝜏)	𝑔(𝑡 − 𝜏)
&

'()&

d𝜏. 

Real signals are finite, which allows adjusting the bounds of the integral 

accordingly. On computers, this operation is not performed continuously but 

numerically, yielding  

𝑓(𝑡) ∗ 𝑔(𝑡) 	= 	 ? 𝑓(𝜏)	𝑔(𝑡 − 𝜏)
&

'()&

. 

Intuitively, this can be understood as a multiplication of the flipped filter with the 

data points that it overlaps with, shifting the filter along the axes and summing the 

products for a given location. Since the entire filter needs to overlap with data 

points to obtain a valid result, each convolutional layer shrinks the input to the 

consecutive layers, unless padding is applied. Padding appends zeros to the 

output of the convolution to preserve its size. Layers of a CNN have many filters 
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that are applied in parallel, which can be done efficiently with graphical processing 

units (GPUs). Each filter extracts a specific feature from the outputs of the 

previous layer, resulting in a corresponding feature map for each filter that is 

passed to the next layer. This sequence of a large number of filters allows the 

detection of complex structures.  

The success of CNNs in image analysis is in part attributable to weight sharing. 

Weight sharing refers to the application of the same filter to all parts of an input 

or a feature map. This also results in a degree of translational invariance of CNNs, 

which means that a translational shift in the input of a layer results in a 

corresponding shift in the activations of that layer. Weight sharing of relatively 

small filters drastically reduces the number of parameters of a CNN and can 

therefore alleviate overfitting compared to FCNNs. This also reduces the number 

of computations drastically. Nevertheless, CNNs typically have millions of 

parameters, which require large image data sets to optimise.  

To reduce the amount of required training data, it is common to apply data 

augmentation. Data augmentations are transformations of the input data that do 

not alter the relationship between image and label. Common augmentations for 

image data are rotations, mirroring and slight shifts in colour, contrast, saturation, 

and brightness. Furthermore, CNNs can be pre-trained on large publicly available 

data sets such as ImageNet [58] to start the optimization at a parameterization 

that is better than random. This is referred to as transfer learning. These pre-

trained models can then be fine-tuned with data from the specific application 

domain. The combination of all these methods allows the efficient optimisation of 

deep CNNs with limited data even on personal computers within hours. 

  



3 Research Objectives 
The objective of this doctoral thesis was the development, application, and 

evaluation of computational pathology methods with applications both in 

research and pathology diagnostics.  

• Study I: The objective of this study was the development and evaluation of 

a computationally efficient approach to predict mRNA gene expression 

from WSIs of H&E-stained prostatectomy specimens. Specifically, we 

wanted to explore whether the co-expression of genes can be leveraged to 

cluster genes both to reduce the computational cost, as well as to improve 

prediction performance.  

• Study II: The objective of this study was to evaluate whether attention-

based multiple-instance-learning models have the potential to improve 

regression prediction objectives. In this case, we wanted to investigate 

whether the prediction of gene expression from WSIs of H&E-stained 

breast resection specimens can be improved with this technique, after it 

had been shown to lead to increased performance for classification tasks.  

• Study III: The objective of this study was to assess the current state-of-

the-art in multi-stain WSI registration. To this end, we conducted the 

ACROBAT WSI registration challenge.  

• Study IV: The objective of this study was to publish and describe the data 

set that we published to facilitate the ACROBAT challenge, such that it 

might be used by the research community to further improve future 

registration algorithms or to increase its usefulness in other research 

contexts beyond registration.  

• Study V: The objective of this study was to assess whether with current 

WSI registration methods, the usefulness of annotations that already 

existed for sections in one stain could be transferred to sections with other 

stains. We then aimed to evaluate whether cancer detection models 

trained with these registered annotations are inferior to those trained with 

annotations that were directly generated for the target stain.  
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4 Materials and methods 

4.1 Image Processing 

WSIs were processed for analysis in Study I, II and V. The pre-processing consists 

of several steps, starting with tissue detection, followed by tiling, stain 

normalisation, cancer detection, and in Study II feature extraction.  

In Study I and II, tissue detection is performed with the level of the H&E WSI image 

pyramid that is closest to a downsampling factor of 32 compared to 40X. This 

image was then transformed to the HSV colour space, where an Otsu threshold 

[59] was applied to the saturation channel. The resulting binary mask was then 

compared to a binary mask with the criterion that the hue channel should have a 

value < 0.75 with a logical AND operation. We then applied morphological opening 

and closing to remove salt-and-pepper noise from the mask, yielding the final 

tissue mask. In Study V, tissue masks were generated from KI67 WSIs with the 

method described in [60], at a resolution of 3.64 µm/pixel and all other parameters 

as suggested by Bándi et al.  

Tissue regions were then tiled. In Study I, tiles were generated at 40X, 20X and 10X 

magnification. For Study II and Study V, tiles were only generated at 20X 

magnification. Since WSIs originate from different scanners, tiling was performed 

at the most common microns-per-pixel in the SöS data set, which are 0.252, 

0.504 and 0.904 microns-per-pixel at 40X, 20X and 10X respectively. If the 

respective MPP did not exist for a WSI, the next higher resolution was accessed, 

and tiles were downsampled using Lanczos interpolation. Only tiles containing 

more than 50% tissue based on the tissue masks were included. Tiles were 

generated with a size of 598 x 598 pixels for Study II and Study V. In Study I, 

STHLM3 WSIs were tiled with 598 x 598 pixels and TCGA WSIs with 500 x 500 

pixels, as we used random cropping to 500 x 500 pixels for training the STHLM3 

cancer detection model.  

H&E tiles were then normalised with an adaptation of the method proposed by 

Macenko et al. in [61]. This normalisation normalises tiles to a predefined target 

stain vector, which was obtained by randomly sampling 3000 tiles from the target 

training data set. The stain vector for each WSI to be normalised was then 

obtained by randomly sampling 100 tiles from each WSI. Each tile was then 

normalised individually based on the respective WSI-level stain vector and the 

target stain vector.  



Cancer detection was performed with an Inception CNN model that was trained 

with data from the Clinseq study. For each tile, we generated a binary prediction 

that indicates whether the tile contains cancer. Resulting tile predictions were 

then transformed into a cancer mask at a downsampling factor of 32 compared 

to 40X. We then performed morphological opening and closing to remove salt-

and-pepper noise. Only tiles that originate from areas within the resulting cancer 

masks were included in the analysis for Study I and II. 

4.2 Machine Learning 

4.2.1 Data Splits and Hyperparameter Tuning 

When optimising machine learning models, particularly models as complex as 

CNNs, it is common that not only the parameters of the model itself need to be 

optimised, but also parameters that define model design choices or the 

optimization process. These parameters are referred to as hyperparameters. 

Examples of hyperparameters are the learning rate, the number of layers and 

neurons in each layer, or even the CNN architecture. When hyperparameters are 

to be optimised, it is not sufficient to subdivide available data into development 

and test data. The development data needs to be further subdivided into data 

used for model parameter optimisation, and data that can be used to compare 

different hyperparameter combinations. Common techniques for this are cross-

validation (CV) or nested CV. All hyperparameters and models optimised in the 

studies that comprise this thesis were optimised in either a CV or nested CV. 

Generated data splits were stratified by relevant clinical covariates such that the 

distribution of these were approximately the same in the different data partitions. 

4.2.2 Inception Networks 

The first Inception network [62], [63], also known as GoogleNet, was developed by 

Szegedy et al. in 2014, winning the ImageNet top-5 classification ranking that year. 

The CNN has approximately 4 million parameters in 22 learnable layers. Inception 

networks consist of Inception modules. The main idea of Inception modules is to 

apply convolutional filters of different sizes in parallel. This has the advantage to 

not constrain the network to a specific filter size and to allow for different 

weighting of different filter sizes throughout the network. To ensure matching 

feature map sizes for different filter sizes, the network uses zero padding. The 

convolutions with 1x1 filters are used to reduce the dimensionality of feature maps 

before convolving with large kernels. Inception CNNs consist of a stem, Inception 

modules and different classifier stages, which are intended to improve gradient 
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flow through the network during training. The lower classification outputs are not 

used during deployment. However, during training, the respective model outputs 

are subject to loss computation and backpropagation of this loss. Inception 

networks remain one of the most common CNN architectures. 

4.2.3 Residual Networks 

Another very common CNN architecture are residual networks or ResNets. A 

ResNet is the first network that might have outperformed humans on the 

ImageNet top-5 classification competition in 2015, with an error rate of 3.57%. The 

ResNet architecture was developed at Microsoft Research by He et al. in [64]. The 

main innovation of ResNets is skip connections in residual blocks. Like Inception 

networks, this can be considered as the combination of convolutions at different 

input scales. Furthermore, skip connections allow the training of considerably 

deeper networks, which might be due to an improved preservation of gradients 

during back-propagation through the skip connections. While the Inception 

network that won the ImageNet competition in 2014 had 22 trainable layers, the 

ResNet that won the competition in 2015 had 152 layers. However, ResNets were 

also the first CNNs in the ImageNet competition that used batch normalisation, 

and it is unclear how much residual blocks and this normalisation contributed to 

the improvements in performance. 

4.2.4 Attention-based Multiple-Instance-Learning 

Supervised machine learning models require a label for model optimization. In the 

context of computational pathology, it is common to divide WSIs into smaller 

image patches, referred to as tiles, to circumvent current computing hardware 

limitations. Labels are then assigned to these individual tiles. Some labels, such as 

areas of invasive cancer, can be trivially transferred to individual tiles based on 

their coordinates. However, for WSI-level or patient-level labels, such as an 

outcome or a treatment response, the contribution of each tile to the label is not 

defined since the label only exists on the WSI (or patient)-level. Often, the WSI-

level label is still naively assigned to each tile, which can produce satisfactory 

prediction results [65], [66]. Another method that has been shown to be effective 

in this setting is multiple-instance-learning (MIL) [67]–[69]. Multiple instance 

learning refers to a setting where a label is only known for a set or bag of instances, 

without knowledge regarding which of these instances contribute to the bag-level 

label. Attention-based MIL has been proven effective in some contexts to solve 

tasks of this structure. Neural networks that use attention mechanisms typically 



consist of two subnetworks. One of these subnetworks, the attention module, 

predicts how much each instance should be weighted. Another subnetwork, the 

prediction module, then generates a bag-level prediction based on the features 

and weight of each instance. The predicted weights can also be used as an 

indication of how much each instance contributes to the bag-level label. In the 

context of computational pathology, this can be used to identify relevant regions 

in WSIs. 

4.3 Statistical Analysis and Performance Metrics 

4.3.1 Spearman Correlation 

The Spearman correlation can be used to quantify the association between two 

variables. It is a non-parametric measure that does not assume a linear 

relationship between variables. It is defined as the Pearson correlation of the ranks 

of the variables. The Spearman correlation between 𝑋, 𝑌 is in [-1, 1], where 0 

indicates no correlation and higher absolute values a monotonic association. It can 

be computed with  

𝑟* 	= 	
cov(𝑅(𝑋), 𝑅(𝑌))

𝜎+(-)𝜎+(/)
, 

where cov is the covariance, 𝜎 denotes the standard deviation and 𝑅 the rank. 

4.3.2 Sensitivity and Specificity 

Sensitivity and specificity quantify the accuracy of a binary classification. The 

sensitivity is defined as the probability of a positive class prediction if the 

observation’s true label is positive. The specificity is defined as the probability of 

a negative class prediction if the observation’s true label is negative. The 

sensitivity is also referred to as recall or the true positive rate. The specificity is 

also referred to as the true negative rate [70]. 

4.3.3 Precision and Recall 

Similarly to sensitivity and specificity, precision and recall can be used to quantify 

the accuracy of a binary classifier. Precision, also referred to as positive predictive 

value, is defined as the proportion of true positives out of all positive predictions. 

The definition of recall is equivalent to the definition of sensitivity. 
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4.3.4 Area under the Receiver Operating Characteristic Curve 

The area under the receiver operating characteristic curve (AUROC, AUC) is a 

quantitative measure of the discriminative ability of a binary classifier. The 

receiver operating characteristic (ROC) curve is generated by plotting the 

sensitivity against 1 - specificity for varying classification thresholds. A value of 0.5 

indicates that the outputs of the classifier are not related to the true class labels. 

In this case, all points of the curve are on a diagonal line with no offset. A value of 

1 indicates a perfect classification [70]. 

4.3.5 Sørensen-Dice Coefficient and Jaccard Index 

In the context of machine learning for image analysis, the Sørensen-Dice 

coefficient, or Dice coefficient, and the Jaccard index are often used to quantify 

the accuracy of semantic segmentations. The Dice coefficient can be understood 

as twice the intersection between two sets divided by the sum of the number of 

elements in each set. In the context of image analysis, this can be understood as 

twice the overlap between two areas, e.g. predicted and true area, divided by the 

sum of the two areas. It can be computed with  

𝐷 =	
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁, 

where 𝑇𝑃 indicates true positives, 𝐹𝑃 false positives and 𝐹𝑁 false negatives. The 

Jaccard index follows the same formula, but does not include multiplication with 

2 in the numerator or denominator. For Boolean variables, the Dice coefficient is 

equivalent to the F1-score. 

4.3.6 Time-to-Event Analysis 

Time-to-event analysis refers to the analysis of the time interval starting e.g. at 

diagnosis or treatment until an event of interest, e.g. recurrence of cancer or death, 

occurs. It is common that the event has not or not yet occurred for all 

observations at the end of their follow-up period. This is referred to as right-

censoring, which is common in the context of medical studies. To obtain correct 

inferences, these observations need to be included in the analysis. One of the 

most common models for time-to-event analysis that are suited for partially 

censored data is the Cox proportional hazards (CPH) model [71]. CPH models 

quantify the association between one or more covariates and the event. CPH 

models are semi-parametric, since they do not require choosing a distribution of 

survival times or hazards. In CPH models, the hazard ℎ is defined through  



ℎ(𝑡) = 	ℎ0(𝑡) exp(𝛽!𝑥! +	𝛽"𝑥" 	+ ⋯+	𝛽1𝑥1), 

where ℎ0 is the baseline hazard, 𝛽 the model coefficients and 𝑥 denotes the 𝑛 

exposure variables. A common application of CPH models is to compute the 

hazards ratio between two groups. Often, one of these groups is e.g. treated or has 

a distinct prognostic marker, indicated through 𝑥2 = 1, compared to the reference 

or baseline group, indicated through 𝑥2 = 0. The hazards ratio then represents the 

change in risk of occurrence of the event. The hazards ratio 𝐻𝑅 between these two 

groups can be computed with  

𝐻𝑅	 = 	
ℎ0(𝑡)	exp	(𝛽2)

ℎ0(𝑡)
= exp(𝛽2).	 

A limitation of CPH models is the proportional hazards assumption, which assumes 

that the effect of covariates is constant over time. Furthermore, the relationship 

between covariates is assumed to be linear and additive. 

4.3.7 Linear Mixed Effects Models 

Linear Mixed Effects (LME) models can be used to estimate effects when there 

are observations that originate from the same statistical units and are therefore 

not independent [72], [73]. LME models can be represented as  

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 	𝜀, 

where 𝑦 represents the response variable, 𝛽 the fixed effects coefficients and 	𝑢 

the random effects coefficients. 𝑋 and 𝑍 are matrices with the values of 

observations. 𝜀 captures the residuals. Fixed effects are assumed to be 

independent, whereas random effects originate from statistical units, such as the 

same tissue specimen, patient, or the same clinic. The assumptions of LME models 

are met if the explanatory variables have a linear relationship with the response 

and the errors have constant variance, are normally distributed and independent. 

4.3.8 Wilcoxon Signed-Rank Test 

The Wilcoxon signed-rank test is a non-parametric hypothesis test [74]. It can be 

used to test whether matched samples originate from the same distribution 

through testing the null hypothesis whether the distribution of differences is 

symmetric around zero. The paired test can be performed by computing the 

differences 𝑋 between pairs of observations. These differences are then ranked, 

such that the smallest value has a rank 𝑅 of one and the highest rank corresponds 

to the number of observations 𝑁. The test statistic 𝑇 can be computed with  
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𝑇 = 	?sign(𝑋2)𝑅2 .
3

2(!

 

The p-value can then be looked up based on the test statistic.  

4.3.9 Controlling the False Discovery Rate with Benjamini-Hochberg’s Method 

Statistical hypothesis tests aim to evaluate null hypotheses. The p-value 

corresponds to the probability that a value as extreme as the observed one arose 

by chance. This null hypothesis is then rejected if the p-value is below a pre-

specified threshold, which is often chosen to be 0.05 or 0.01. There are two 

possible types of error in hypothesis testing, type I and type II errors. Type I error 

refers to the rejection of a true null hypothesis, and therefore a false discovery, 

whereas a type II error refers to a failure to reject a false null hypothesis, which is 

a missed discovery. When conducting a large number of hypothesis tests 

simultaneously, it is essential to adjust p-values such that the rate of false 

discoveries is controlled. The false discovery rate (FDR) is the proportion of false 

positives in the set of false and true positives. The FDR can be controlled with the 

method described by Benjamini and Hochberg [75] at a level 𝛼. With this method, 

given 𝑚 p-values sorted in ascending order, the null hypothesis up to the	𝑘-th 

element can be rejected for which  

𝑝(𝑘) ≤ 	𝛼	
𝑘
𝑚	.	 

4.4 Data Sets 

The WSIs included in the studies that comprise this thesis originate from six 

studies, STHLM3, TCGA-PRAD, TCGA-BRCA, Clinseq, SCAN-B, and SöS. All 

included WSIs were digitised at 40X magnification, which corresponds to 

approximately 0.25 µm/pixel. 

4.4.1 STHLM3 

The STHLM3 study is a prospective population based diagnostic trial that was 

conducted between May 2012 and December 2014. Prostate biopsies were 

conducted on patients with a PSA ≥3ng/mL or a PSA ≥1ng/mL and a S3M 

probability of high-grade prostate cancer >10%. A subset of the generated 

biopsies originating from 1,136 patients, selected with stratified sampling on ISUP 

grade, was then digitised with a Hamamatsu NanoZoomer XR WSI scanner. Besides 



ISUP grade, detailed cancer annotations are available for all WSIs. WSIs from this 

study were included in Study I. 

4.4.2 TCGA-PRAD 

The TCGA-PRAD study was conducted by The Cancer Genome Atlas Research 

Network [76]. The study includes 403 prostate cancer patients who underwent 

radical prostatectomy. WSIs in this study contain these prostatectomy 

specimens and were generated with Aperio WSI scanners. WSIs, genomic data, 

patient demographics, clinical characteristics, and outcome data are available 

from the GDC data portal (https://portal.gdc.cancer.gov/). Data from TCGA-PRAD 

was included in Study I. 

4.4.3 TCGA-BRCA 

The TCGA-BRCA study was conducted by The Cancer Genome Atlas Research 

Network [77]. The study is based on breast cancer resection specimens from 1,098 

primary breast cancer patients. The TCGA WSIs, genomic data, as well as patient 

demographics, clinical characteristics and outcome data are available from the 

GDC data portal (https://portal.gdc.cancer.gov/). Patients whose slides were 

scanned at 20X resolution were excluded. All WSIs in TCGA-BRCA were digitised 

with Aperio WSI scanners. Data from this study was included in Study II. 

4.4.4 Clinseq 

The Clinseq (Clinical Sequencing of Cancer in Sweden) study consists of 307 

female breast cancer patients from the Libro-1 and KARMA studies [78], [79]. The 

Libro-1 study retrospectively included breast cancer patients younger than 80 

years who underwent surgery at Karolinska Universitetssjukhuset between 2001 

and 2008. KARMA patients were enrolled prospectively from Stockholm’s 

Södersjukhuset in 2012. Clinical characteristics and outcome information was 

obtained from the Stockholm-Gotland Regional Breast Cancer quality register, 

which contains historical data up to 2007, and the Information Network for Cancer 

Care (INCA), which contains data of breast cancer patients diagnosed between 

2007 and 2018. WSIs of surgical resection specimens were digitised with 

Hamamatsu NanoZoomer XR and S360 WSI scanners. The Clinseq data set was 

used in Study II. 

4.4.5 SCAN-B/ABiM 

The SCAN-B (Sweden Cancerome Analysis Network - Breast) study is a multi-

center study comprising seven hospital sites in South Sweden. We had access to 
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a subset of the SCAN-B study materials, consisting of 1,262 prospectively enrolled 

breast cancer patients that were diagnosed in Lund from 2010 to 2019 [80]. 

Patient information, including tumour characteristics such as NHG and biomarker 

statuses, as well as treatment and outcome information were obtained from INCA. 

Slides with resection specimens were digitised with a Hamamatsu NanoZoomer 

XR WSI scanner. A subset of patients from the SCAN-B cohort has RNA-seq data 

available. This subset is referred to as the ABiM cohort and was used in Study II. 

4.4.6 SöS 

The SöS cohort consists of 2,421 patients whose slides were retrieved from 

hospital archives and who were retrospectively enrolled. Both WSIs of biopsy and 

resection specimen are available, however, only WSIs of resection specimen were 

used here. Included patients were diagnosed with breast cancer at Stockholm’s 

Södersjukhuset between April 2012 and May 2018. Associated clinical information 

was obtained from the Swedish national quality registry for breast cancer (NKBC) 

[81]. NKBC includes information on patient demographics, tumour characteristics 

such as NHG and biomarker statuses, as well as on treatments and outcomes. All 

slides were digitised with Hamamatsu NanoZoomer XR or S360 WSI scanners. The 

resulting WSIs are included in Study III-IV. 

  



5 Ethics 
All materials that were used in the studies that comprise this thesis were retrieved 

from archives, registries, or data bases. No interventions were performed. WSIs 

and clinical information were stored on servers with restricted access at the 

Department for Medical Epidemiology and Biostatistics (MEB) at Karolinska 

Institutet. These servers are only accessible from the internal network at MEB. Data 

that were published to conduct the ACROBAT challenge were fully anonymised 

before publication. Data management is therefore compliant with the General 

Data Protection Regulation (GDPR) and the Swedish Data Protection Act. The 

following ethical permits apply:  

• Study I: The TCGA PRAD data are fully anonymized and publicly available 

through the US-American NIH National Cancer Institute GDC data portal 

and therefore require no ethical permits. For STHLM3, the ethical permits 

DNR 2012/572-31/1, DNR 2012/438-31/3, DNR 2013/981-32, DNR 2018/845-

32 apply.  

• Study II: The TCGA BRCA data are fully anonymized and publicly available 

through the US-American NIH National Cancer Institute GDC data portal 

and therefore require no ethical permits. For Clinseq and SöS, the ethical 

permits DNR 2017/2106-31 with amendments DNR 2018/1462-32, DNR 

2019-02336 apply. For SCAN-B, the ethical permits DNR 2009/658, DNR 

2009/659 with amendment DNR 2015/277 apply. 

• Study III-V: For SöS, the ethical permits DNR 2017/2106-31 with 

amendments DNR 2018/1462-32, DNR 2019-02336 apply. 
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6 Results 

6.1 Study I 

In Study I, I developed and evaluated a computationally efficient approach to 

predict tumour average gene expression from WSIs of H&E-stained 

prostatectomy specimens. The underlying assumption is that co-expressed 

genes are associated with similar morphological changes, which might improve 

prediction performance. We predicted expression values for the whole 

transcriptome, selected genes for which the predictions were significantly 

associated with RNA-seq estimates in the development data and then validated 

those genes in a test set. Furthermore, we evaluated whether the prognostic cell-

cycle progression (CCP) score can be predicted from WSIs. We used the 

Spearman correlations between predictions and RNA-seq estimates as the 

primary performance metric.  

Study I is based on the TCGA PRAD study, which consists of 403 patients that 

underwent radical prostatectomy and that originate from 27 cancer centres. Out 

of these 403 patients, 370 were included in this study, based on the prostate 

cancer subtype, the availability of matching prostatectomy WSIs and RNA-seq 

data, prior systemic treatment or synchronous malignancies and a minimum 

detected contiguous tumour area of 1 mm2. To identify regions of invasive cancer 

in the WSIs, we developed a cancer detection model based on prostate biopsies 

from the STHLM3 study. Only tiles that were predicted to contain invasive cancer 

were included in the gene expression prediction analysis. Out of the 370 included 

patients, we randomly selected 92 as a held-out test set.  

In TCGA PRAD, there is expression data for 19,601 transcripts available. We 

included genes with at least three counts in at least 10% of patients, resulting in 

15,586 selected genes. We then proceeded to cluster these genes into 50 clusters 

based on their co-expression, which we quantified through the average absolute 

Spearman correlation of transcripts in the development set. Out of these 50 

clusters, we randomly selected 10 clusters with 2,636 genes for model 

optimization and selection.  

Models were optimised in a nested CV and compared based on the predictions 

for the outer CV validation folds. The proposed modelling approach consists of 

CNNs that predict clusters of genes simultaneously. If a cluster consists of 𝑛 

genes, the respective CNN will have 𝑛 outputs, one for each transcript. This model 



is referred to as corr clusters. We compared this modelling approach to several 

baseline models. The first baseline model, referred to as rnd clusters, is based on 

multi-output CNNs that predict randomly grouped transcripts. The second 

baseline model, referred to as lgbm, consists of boosting models that were 

optimised to predict a single transcript per model based on ResNet18 extracted 

ImageNet features with the package LightGBM [82]. As a further baseline model 

referred to as all gene, we optimised a CNN to predict all 15,586 included 

transcripts and selected the 2,636 development gene predictions for 

comparisons. As an additional baseline, we randomly selected 50 genes out of the 

2,636 development transcripts and optimised CNNs that each predicted a single 

gene. This model is referred to as single gene. ResNet18 was selected as the model 

architecture for all CNNs. 

 

Figure 7. Performance overview from [66]. a) shows boxplots that summarise the distributions of Spearman 
correlations for 2,636 transcripts of the compared modelling approaches. The boxplot denoted with CV 
describes the distribution of Spearman correlations for the 15,586 transcripts for the proposed method corr 
clusters. Test indicates the boxplot that describes the distribution of Spearman correlations of the 6,618 
transcripts that were selected for validation in the test set. b) shows a scatterplot between the Spearman 
correlations of 50 randomly selected transcripts for models trained with the corr clusters approach and 
single-gene prediction CNNs. c) shows a comparison of model optimisation times. 

Figure 7 shows a comparison of the baseline model performances, as well as of 

the computational times for model optimization. As can be seen from Figure 7a), 

the proposed corr cluster modelling has higher Spearman correlations between 

predictions and RNA-seq estimates. In the evaluation of all 15,586 transcripts in 

the CV, 6,618 had a BH-adjusted p-value below 0.001. These were then evaluated 

in the test set, where 5,419 out of the 6,618 transcripts were significantly 

associated with predictions with BH-adjusted p-values below 0.001. Figure 7b) 

shows a scatterplot between the Spearman correlations of the single gene model 

and the corr clusters model. The p-value from a paired one-sided Wilcoxon rank 

sum test is below 0.01, indicating that the Spearman correlations are higher for the 
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corr clusters model. Figure 7c) indicates that the corr clusters model is 

substantially faster to optimise than single gene or lgbm models. 

 

Figure 8. Comparison between the CNN and RNA-seq-based cell cycle progression (CCP) score, modified 
from [66]. a) shows the Spearman correlations between CNN-predicted and RNA-seq gene expression in the 
test set with bootstrapped 95% confidence intervals. b) displays the Ranked CCP scores for each ISUP grade 
both for the CNN and RNA-seq-based CCP score. c) shows the univariate HR of the CNN-predicted and RNA-
seq-based CCP score for the CV and test set. In the CV data, the HR for the CNN predictions is 2.579 [1.412, 
4.713] and 1.68 [1.256, 4.713] for RNA-seq. In the test set, the respective HRs are 2.943 [1.055, 8.212] for CNN 
predictions and 1.351 [0.956, 1.909] for RNA-seq. 

Furthermore, we investigated the prediction of the CCP score, which was obtained 

by averaging the respective predictions of the transcripts included in the CCP 

score. The Spearman correlation for the CCP score based on CNN predictions and 

its RNA-seq counterpart is 0.527 [0.357, 0.665]. We also evaluated the hazards 

ratio for the time to biochemical recurrence in the CV data and the test set, as 

shown in Figure 8c). Due to a limited number of events in the test set, only 

univariable analysis was possible. In the test data, the RNA-seq-based CCP has a 

HR of 1.351 [0.956, 1.909], whereas the CNN-based CCP has a HR of 2.943 [1.055, 

8.212].  

This study indicates that the expression of many genes, including genes relevant 

in the context of prostate cancer, such as the ones comprising the CCP score, can 

be predicted from H&E WSIs to some degree. Predicting expression in clusters of 

co-expressed genes is a computationally efficient approach that can improve 

performance, but this conclusion may require further validation, particularly in 

external data. While prediction performances might not be sufficient to replace 

molecular assays, they may be sufficient to select patients who could benefit from 

further molecular testing. Furthermore, gene expression prediction from H&E WSIs 

could be useful as a cost-effective way to obtain some molecular profiling 

information in large-scale research studies, particularly on archived tissue 

materials. 



6.2 Study II 

In Study II, we investigated whether attention-based MIL, which has recently been 

shown to improve performance in some classification tasks, also improves the 

performance of regression objectives. We investigated this with a simulation and 

the prediction of gene expression from WSIs of H&E-stained breast cancer 

resection specimens. This analysis includes a data set with local expression 

estimates from spatial transcriptomics. For bulk gene expression prediction, we 

used the Spearman correlation between predictions and RNA-seq expression 

estimates as the primary performance metric. Spatial transcriptomics predictions 

were additionally evaluated with the proportion of variance explained by the fixed 

effects in LME models.  

The simulation experiments in Study II are based on the MNIST data set [54], which 

consists of 28 x 28 pixel binary black and white images with handwritten digits in 

[0, 9]. The MNIST training data has 60,000 images, which we split into 48,000 

images for model optimization and 12,000 images as a validation set for 

hyperparameter tuning. The MNIST test set consists of 12,000 images. Images 

were assigned to bags of size 32, which includes randomly generated images 

containing noise. The proportion of noisy images varied with 0%, 25%, 50% and 

75% in different experiments. As a label for the bag, we set the mean of all MNIST 

images in the bag. This emulates a setting in which some instances in a bag do not 

contribute to the true label of the bag. All simulations were repeated 100 times.  

The real-world application in this study is the prediction of bulk gene expression 

from WSIs of H&E-stained breast cancer resection specimens. WSIs originate 

from four different studies. From the first study, Clinseq, we included 270 patients. 

Furthermore, we selected 721 patients from the TCGA BRCA study for which 

sufficiently complete clinical information was available. 697 patients from these 

two data sets were randomly selected for model training. From the remaining 

patients, 122 were selected as a validation set and 172 as an internal test set. 350 

patients from the ABiM study were chosen as an external test set, additionally to 

22 patients with spatial transcriptomics data. We included 125 randomly selected 

transcripts out of 1,011 for which an association between predictions from WSIs 

and RNA-seq estimates had previously been established [65]. 25 transcripts were 

used for hyperparameter tuning and 100 for testing and model comparisons. 

ImageNet features were extracted for each tile containing invasive cancer using a 

ResNet18 model.  
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Both in the simulation and the gene expression prediction, we compared four 

modelling approaches. In the gene expression prediction, a WSI is considered as 

a bag of tiles, which are the instances in this case. The first model uses an 

attention-weighted average of instance features (AF) to generate bag-level 

representations, on which predictions are based. The second model uses an 

attention-weighted average of predictions (AP) to generate bag-level predictions 

from instance-level features. The third model uses the mean of all instance 

features (MF) as an input to a prediction module to generate bag-level 

predictions. The fourth model uses the mean of all instance-level predictions (MP) 

as the bag-level prediction. This model is conceptually comparable to the 

approach chosen in Study I, although models in Study I were trained end-to-end 

with some exceptions.  

In the simulation experiments, we observed that models that are based on means 

outperform attention-based models if there are few images with noise in the 

respective bags. However, if a higher proportion of images containing noise is 

present, attention-based models perform better.  

 

Figure 9. Boxplots with distributions of Spearman correlations for each modelling approach for the internal and 
external test data. From [83]. 

Figure 9 depicts boxplots and the distributions of Spearman correlations for bulk 

gene expression prediction in the internal and external test set. Paired one-sided 

Wilcoxon signed rank tests indicate that all models outperform the MF model with 

BH-adjusted p-values < 0.05. The median Spearman correlation of all models is 



marginally higher in the internal test set compared to the external test set, with 

slightly higher decreases for attention-based models. For the AF model, the 

decrease in median Spearman correlation is 0.029, for the AP model 0.037, for the 

MF model 0.012 and for the MP model 0.012. In the spatial transcriptomics analysis, 

differences both in Spearman correlations and proportions of variance explained 

between the four models were marginal. 

The simulation experiments of this study indicate that the performance 

improvements of attention-based MIL seen in classification might also translate 

to regression objectives to some degree. However, bulk gene expression 

prediction might not meet the conditions under which a MIL approach is 

beneficial. There appears to be no benefit of attention models for gene expression 

prediction in this study. Potentially, the prediction of gene expression is currently 

not limited through the choice of modelling approach but through data availability. 

Furthermore, it appears like the decrease in performance between internal and 

external data is slightly higher for the attention models, probably due to the 

increased complexity of the modelling approach. Attention-based MIL models 

therefore appear worthwhile to benchmark also for tasks outside of classification, 

however, they need to be carefully evaluated, both with regards to their 

assumptions and generalizability. 

6.3 Study III & IV 

Study III and Study IV are closely intertwined. In Study III, we conducted the 

AutomatiC Registration Of Breast cAncer Tissue (ACROBAT) challenge that was 

held in conjunction with the Medical Image Computing and Computer Assisted 

Intervention (MICCAI) 2023 conference in Singapore. The purpose of the challenge 

was to establish the current state-of-the-art in the registration of differently 

stained WSIs that originate from slides from routine clinical workflows. Study IV 

describes the data set that we published to facilitate the ACROBAT challenge.  

The ACROBAT data set consists of 1,153 female primary breast cancer patients 

that are part of the SöS study. 750 patients were randomly sampled for the 

training set and 100 patients for the validation set. The 303 test set cases were 

chosen as a subset of the SöS study that was previously selected for a different 

research project such that semantic annotations for different tissue types are 

available. Cases were excluded and randomly replaced by a new case if visual 

assessment of the WSIs revealed that the diagnostic slide contains two sections 

from the same tissue, as it would be unclear which of these sections should be the 
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target for registration. For each case in the training set, there is one WSI of H&E-

stained tissue, along one to four WSIs with IHC-stained tissue with the four routine 

diagnostic stains ER, PGR, HER2 and KI67. The training set contains 3,406 WSIs. For 

cases in the validation and test set, there is one WSI of H&E-stained tissue and 

one corresponding randomly selected WSI of IHC-stained tissue. The validation 

set contains 200 WSIs, while the test set contains 606 WSIs. All WSIs were 

anonymised and image pyramid levels of 10X and lower magnifications were 

published. Alongside the WSIs, we anonymised clinical information such as year of 

diagnosis, grade, and biomarker statuses for the test set, as well as semantic 

annotations. Semantic annotations include the classes normal tissue, invasive 

cancer (IC), artefact, DCIS, LCIS and non-malignant changes (NMC). This data was 

not published alongside the WSIs. An overview of the cases, WSIs, stains, 

antibodies and scanners is available in Table 1. 

 Training Validation Test Total 

cases 750 100 303 1503 

slides 3406 200 606 4212 

stain/antibodies     
H&E 750 (22%) 100 (50%) 303 (50%) 1153 (27.4%) 

ER 732 (21.5%) 29 (14.5%) 84 (13.9%) 845 (20.1%) 

KI67 732 (21.5%) 29 (14.5%) 82 (13.5%) 843 (20%) 

PGR 728 (21.4%) 28 (14%) 81 (13.4%) 837 (19.9%) 

HER2 464 (13.6%) 14 (7%) 56 (9.2%) 534 (12.7%) 

scanners     
C13220 559 (16.4%) 38 (19%) 205 (33.8%) 802 (19%) 

C12000-02 884 (26%) 46 (23%) 203 (33.5%) 1133 (26.9%) 

C12000-22 1963 (57.6%) 116 (58%) 198 (32.7%) 2277 (54.1%) 
 

Table 1. Overview of cases, WSIs, stains, antibodies, and scanner models in the ACROBAT training, validation, 
and test set. 

All cases in the validation and test set were randomly assigned to 13 annotators, 

who placed pairs of landmarks in matched H&E and IHC WSIs, as shown in Figure 

10. Annotators were asked to place 50 landmark pairs for each case. While there 

was only one phase of annotations in the validation set, there were two in the test 

set. Landmarks from the first annotation round in the H&E WSIs were randomly 

shifted by up to 115 µm and a second annotator was asked to move the landmark 



in the H&E WSI to the correct location, based on the landmark position in the IHC 

WSI from the first annotation phase. In total, 35,760 landmark pairs were placed in 

the validation set and during the first and second annotation phase. This results in 

5020 landmark pairs with one annotator each for performance evaluation in the 

validation set and 13,130 pairs with two annotators each for the test set after 

excluding landmarks with an annotator disagreement of more than 115 µm. 

 

Figure 10. Example of pairs of landmarks in corresponding WSIs of H&E and IHC-stained tissue sections. 

The ACROBAT challenge was conducted between the 1st of April 2022 and the 

26th of August 2022, with an associated workshop at the MICCAI 2023 

conference during which the test set leaderboard was announced publicly. Both 

for the validation and test set, we published landmarks that were placed in the IHC 

WSIs. Participants were then asked to register these landmarks to the 

corresponding H&E WSIs and submit registered landmark coordinates in 

micrometres. Participants had the opportunity to submit validation set landmarks 

on the ACROBAT challenge website (https://acrobat.grand-challenge.org/) to 

receive quantitative feedback on their registration performance. This submission 

system is intended to remain available indefinitely. Eight teams submitted all 

necessary materials to qualify to be ranked in the test set leaderboard.  

The primary ranking metric was chosen as the median 90th percentile of target-

registration-errors (TREs). The TRE is computed by obtaining the mean distance 

in micrometres between the registered landmark position and the positions set 

by the first and second annotator. The 90th percentiles are then computed across 

all landmarks within each WSI. Besides the median 90th percentile, we 

investigated the ranking for the 90th percentile of 90th percentiles, the mean 

90th percentile, the median and mean TREs across all landmarks without 
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aggregating, and the mean reduction of TREs in percent between unregistered and 

registered landmark positions. For reference, we computed the corresponding 

metrics for the distance between first and second annotators (DBAs).  

Besides an evaluation of algorithm performances, we also investigated covariates 

that impact algorithm TREs and the DBA using LME models. We used the 𝑙𝑜𝑔10-

transformed TREs or DBA as the endogenous variable. As random effects, we 

included the combination of first and second annotator, as well as the WSI ID. As 

fixed effects, we included the antibody of the IHC WSI with ER as the reference, 

the semantic segmentation of a landmark with normal tissue as the reference 

category, the distance in millimetres between a landmark and the centre of tissue 

mass, the slide age in years, the NHG for landmarks within IC regions and the 

interaction of biomarker status and antibody for landmarks within IC regions. 

Based on the availability of this additional information, we included 11,465 test set 

landmarks into the LME analysis. 

 

Figure 11. Distributions of 90th percentiles and rankings for different metrics. a) shows the distributions of 90th 
percentiles of TREs in the validation and test set as violin plots. b) displays the rank of different teams for each 
computed metric. 

The highest score in the challenge was achieved by the team Gestalt Diagnostics, 

with a median 90th percentile in the test set of 60.1 [55.8, 68.6] µm. The median 

90th percentile by the following teams is ca. twice as high, with 123.3 [98.5, 144.1] 



µm for VALIS, 137.6 [120.3, 176.7] µm for AGHSSO and 155.3 [123.1, 184.7] µm for 

Fraunhofer MEVIS. Lower ranked methods have a median 90th percentile in the 

range of three or more times the score of Gestalt Diagnostics. Figure 11a) shows 

the distributions of 90th percentiles of TREs in the validation and test set as violin 

plots. Testing for differences in distributions with Mann-Whitney U rank tests 

implies that only for Gestalt Diagnostics, there is a difference between the 

distributions for validation and test set based on BH-adjusted p-values. Figure 11b) 

shows the ranking for all computed metrics, which are mostly stable across 

metrics, with some deviations for VALIS. 

 

Figure 12. Fixed effect coefficients and conditional means of random effects of the LME model analysis, both 
for the TREs of the six teams with the highest ranking, as well as the DBA. a) displays the change in percent for 
a unit increase in the fixed effect, including 95% confidence intervals. If the confidence interval contains zero, 
the respective marker is transparent. Units are indicated for continuous fixed effects, whereas the percentage 
next to categorical fixed effects refers to the percentage of landmarks in the category. Effects with the prefix 
Seg refer to the semantic annotation of landmarks. b) displays boxplots that describe the distributions of 
percentage changes of conditional means of the random effects. The boxes indicate the lower to upper 
quartile of the distributions, while whiskers extend to 1.5 times the interquartile range or the maximum or 
minimum value. Outliers are not shown. 
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The results of the LME model analysis for the six highest ranked teams and the 

DBA in black are shown in Figure 12. Based on the coefficients from the LME 

analysis in Figure 12a), it appears that the antibody of a stain does not impact 

algorithm performances. A possible exception might be HER2, for which the point 

estimates of the fixed effects for all teams are below zero. The semantic 

annotations of tissue regions appear to generally be negatively associated with 

the TRE compared to the reference category of normal tissue, with the exception 

of artefacts that might only exist in one image of an image pair. A higher NHG in IC 

regions is associated with higher TREs. Positive biomarker statuses in IC regions 

are associated with higher TREs for HER2 and potentially with a weaker association 

for PGR. One of the main drivers of TREs appears to be the continuous slide age. 

At a slide age of four years, all teams except for Gestalt Diagnostics have an 

increase of TRE of ca. 100%. The other continuous fixed effect, the distance of a 

landmark to the tissue centre of mass, is also associated with higher TREs except 

for Gestalt Diagnostics. This is the only case in which a statistically significant 

coefficient for a team has a different sign from the coefficients for the other 

teams. Based on the LME analysis, we found fewer associations for the fixed 

effects of the DBA compared to TREs, and effect sizes appear to be smaller. The 

distributions of changes in percent for conditional means of the random effects 

are displayed in Figure 12b). The interquartile range for the annotator combination 

is highest for the DBA, followed by Gestalt Diagnostic and decreasing with worse 

performance. In contrast, the interquartile range for the WSI ID is lowest for 

annotators, followed by Gestalt Diagnostics and approximately increasing with 

worse performance.  

The ACROBAT challenge establishes the current state-of-the-art in WSI 

registration. Mean registration errors in the order of magnitude of 100 µm and 

below might already approach the limit of possible performance for non-

consecutive sections. While improvements in robustness are likely still desirable, 

errors this low enable a wide range of research and clinical applications. 

Furthermore, the challenge has generated novel insights into what affects WSI 

registration performances and can therefore guide future methods development. 

The difference between validation and test set distribution of performance 

metrics and the LME analysis indicate that for the highest ranked team, Gestalt 

Diagnostics, the DBA might be too high to measure further improvements in the 

method. 



6.4 Study V 

In Study V, we investigated whether cancer detection models that were optimised 

with registered annotations are inferior to cancer detection models that were 

optimised with annotations that were directly generated for the target WSIs. This 

has the potential to increase the usefulness of existing annotations and reduce 

the need for new annotations, which can be costly to generate. Furthermore, we 

evaluated the correlation between cancer detection performances and KI67 

scores.  

The data set that we used in this study is a subset of the SöS study. It includes 

WSIs from 272 breast cancer cases. For each case, there is one H&E and one KI67 

WSI, with 544 WSIs in total. Annotations of invasive cancer regions are available 

for all WSIs. Annotations that were generated for the H&E WSIs were registered to 

the KI67 WSIs with the WSI registration algorithm proposed in [84], which 

corresponds to team AGHSSO in Study III. The data set was split into a 

development set for model optimisation and hyperparameter tuning including 218 

cases, and a test set that includes 54 cases. The split was stratified based on low 

or high KI67 expression, split on the median KI67 score. We then optimised 

ResNet18 CNN models that predict whether a tile contains invasive cancer. One 

ensemble of models was optimised with the annotations that were generated 

directly in the KI67 WSIs. Another ensemble of models was optimised with the 

registered annotations.  

 
AUROC Dice Jaccard Accuracy Specificity Sensitivity Precision 

manual 

annot. 

0.974 

[0.964, 

0.982] 

0.816 

[0.768, 

0.858] 

0.718 

[0.662, 

0.771] 

0.919 

[0.899, 

0.936] 

0.921 

[0.898, 

0.94] 

0.915 

[0.882, 

0.94] 

0.78 

[0.72, 

0.835] 

registered 

annot. 

0.974 

[0.965, 

0.982] 

0.813 

[0.765, 

0.858] 

0.716 

[0.657, 

0.769] 

0.921 [0.9, 

0.939] 

0.931 

[0.908, 

0.951] 

0.888 

[0.851, 

0.917] 

0.798 

[0.737, 

0.853] 

BH-adj. p-

value 0.962 0.879 0.885 0.891 0.006 <0.001 0.017 

Table 2. Performance metrics for cancer detection models trained with manual annotations that were 
generated directly for the KI67 WSIs and for models trained with registered annotations. 
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All model performances were computed with annotations that were generated 

directly in the KI67 WSIs. We computed AUROC, Dice score, Jaccard index, 

accuracy, specificity, sensitivity/recall, and precision for the tiles within each WSI. 

This yields one value for each performance metric for each WSI. We then 

compared the distributions of performance metrics between the two modelling 

approaches with paired Wilcoxon signed rank tests. Performance metrics, 

including bootstrapped 95% confidence intervals and BH-adjusted p-values from 

the Wilcoxon tests are available in Table 2. The models differ in calibration, as 

visible from the significant differences for specificity, sensitivity, and precision, but 

not in performance, as is apparent from AUROC, Dice score, Jaccard index and 

accuracy. 

 
AUROC Dice Jaccard Accuracy Specificity Sensitivity Precision 

manual 

label- 

registered 

label 

0.954 

[0.904, 

0.983] 

0.948 

[0.907, 

0.974] 

0.948 

[0.907, 

0.974] 

0.882 

[0.784, 

0.947] 

0.879 

[0.765, 

0.95] 

0.918 

[0.857, 

0.963] 

0.964 

[0.938, 

0.981] 

KI67-

score - 

manual 

label 

0.175  

[-0.115, 

0.452] 

0.267 

[-0.03, 

0.538] 

0.269  

[-0.026, 

0.542] 

-0.029  

[-0.348, 

0.285] 

-0.226  

[-0.538, 

0.109] 

0.389 

[0.138, 

0.605] 

0.149      

[-0.161, 

0.441] 

KI67-

score- 

registered 

label 

0.221  

[-0.06, 

0.482] 

0.286 

[0.001, 

0.547] 

0.286 

[0.006, 

0.543] 

-0.066  

[-0.369, 

0.246] 

-0.257  

[-0.547, 

0.068] 

0.477 

[0.23, 

0.681] 

0.124  

[-0.174, 

0.417] 

Table 3. Spearman correlations between performance metrics of the two modelling approaches, as well as 
between the performance metrics and the KI67 scores of the respective WSIs. 

Furthermore, we investigated the correlations between model performance 

metrics and performance metrics and KI67 scores. The results are available in 

Table 3. Performance metrics between models are highly correlated. Regarding 

the correlation between performance metrics and the KI67-score, only the 

confidence interval of the sensitivity/recall does not include 0, indicating a higher 

sensitivity for WSIs with a higher KI67-score. 



This study indicates that cancer detection models for different IHC stains can be 

trained with registered H&E annotations without a decrease in performance 

compared to generating new annotations for each stain. Compared to directly 

using registered annotations to identify cancer regions in IHC WSIs, this can be 

necessary if there are no (consecutive) H&E sections available. Most semantic 

annotations in histopathology currently exist for H&E WSIs. This study provides 

some evidence that the usefulness of these annotations can be substantially 

increased through WSI registration. However, validation with external data and 

further IHC stains may be necessary to draw firm conclusions. 
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7 Discussion 
Since I began working on this thesis in May 2019, the field of computational 

pathology has made significant advances. There are, for example, several studies 

that thoroughly investigate AI systems that automate Gleason grading of prostate 

biopsies, some of which were conducted with the participation of Karolinska 

Institutet [85]–[87]. Further examples that go beyond what pathologists can 

visually assess include the prediction of novel prognostic markers [88]–[90] and 

genetic alterations [91], [92]. I hope that this thesis will make a modest contribution 

towards the advancement of computational pathology in research and 

translational applications. The studies comprising this thesis focus on the 

development, application, and evaluation of methods for gene expression 

prediction from WSIs, as well as WSI registration. The assessment of gene 

expression from WSIs is an application that can generally not be performed by 

human pathologists. WSI registration can be fully automated or based on manual 

input, either of rotation and translation or the selection of matching landmarks, 

where the registration precision increases to some degree with the number of 

landmarks placed. However, highly accurate non-rigid registrations require 

sophisticated algorithms and can generally not be performed by pathologists at 

scale. It can therefore be argued that this thesis focuses on methods that expand 

the capabilities of pathologists, rather than automating routine tasks.  

The modelling approach developed in Study I appears promising, with modest 

improvements in prediction performance but substantial improvements in 

computational efficiency, both for training and prediction. We aimed at a fair 

evaluation against several plausible baseline models, but potential comparative 

benefits for performance need to be further validated. In Study II, we investigated 

several modelling approaches for gene expression prediction with the objective 

to evaluate attention-based MIL models in this context. However, no relevant 

differences between modelling approaches became apparent. It is unclear 

whether this study is limited through data availability and if differences would 

become apparent if more training data were available. For now, it appears like the 

simplest modelling approach is preferable as there are no performance 

differences.  

There are several studies that evaluate the potential of AI models for gene 

expression prediction [65], [66], [93], [94]. It appears therefore well established 

that there is a learnable association between morphology in WSIs and gene 



expression of individual genes. Generally, the prediction performances in these 

studies are similar. This could indicate that these studies are limited through the 

same factors. Limits on the performance could either be imposed by current 

modelling approaches or the availability of training data. While all studies deploy 

slightly different modelling approaches, all of these are based on CNNs and often 

ImageNet weights. Future research should investigate whether performance 

improvements are possible with additional data. It is also possible that the 

association between morphology and gene expression does not allow for higher 

prediction performances. Furthermore, all these studies rely on TCGA data to 

some degree, if not entirely. It is therefore essential that findings are further 

validated with additional data sets. While prediction performances generally do 

not appear high enough to replace molecular assays, current performances might 

already suffice to detect patients that could benefit from further molecular 

profiling. Furthermore, gene expression prediction from routine diagnostic slides 

has the potential to be a cost-effective means to facilitate large-scale 

epidemiological studies based on archived materials.  

The spatial transcriptomics analysis of gene expression predictions in Study II and 

[65] is based on a manual registration between sequenced slides and diagnostic 

H&E WSIs. Generally however, the main applications of WSI registration currently 

revolve around 3D reconstruction [95], [96], the transfer of annotations or 

segmentations between WSIs as in Study V and [97], [98], stain-guided learning 

[99]–[101], virtual staining [102]–[105], and the analysis of multiplex stained 

histology [106], [107]. These are promising avenues of research that can deliver 

both new biomedical insights, as well as tools for clinicians and researchers. 

However, the state-of-the-art of WSI registration on data from routine clinical 

workflows was unclear prior to the ACROBAT challenge. While the ANHIR WSI 

registration challenge [108] laid important groundwork for the evaluation of WSI 

registration methods, the training and test data were not sufficiently separated to 

independently assess performance. The ANHIR data set consists of WSIs with a 

higher variety of stains and organs than the ACROBAT data set. During internal 

evaluations of some of the ANHIR methods, we realised that despite very high 

reported robustness in the ANHIR challenge, methods failed on a significant 

proportion of data from routine workflows, potentially due to lower quality of 

tissue materials and more artefacts. I therefore believe that the ACROBAT 

challenge is a highly useful point of reference to move the field of WSI registration 

forward, which will in turn enable further research studies that require WSI 
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registration. Research community challenges have the advantage of 

independently evaluating methods through a third party, in this case me and my 

collaborators Masi Valkonen and Leslie Solorzano. While the evaluation of 

registration performance through landmarks has its limitations, e.g. only estimating 

performances in the location of landmarks, which might in turn be a biased 

selection that favours landmarks that are easy to recognize by humans, we believe 

to have performed one of the most thorough investigations of WSI registration to 

date. Furthermore, we could elucidate factors that impact algorithms with the LME 

analysis. The submission system for the validation data is fully automated and will 

remain open as a resource for the community without a planned expiration date. 

Validation with the test data will require contacting us to avoid that a high number 

of submissions on the test set invalidates its independence.  

Besides the challenge itself, I hope that the ACROBAT data set will prove a valuable 

resource for the research community. To the best of my knowledge, the ACROBAT 

data set is the currently largest publicly available WSI data set that has multiple 

stains available for sections from the same tumour. While WSIs are only available 

at 10X and it was not possible to share clinical information, I believe that this data 

set can still be useful for many avenues of research outside of WSI registration. 

These include the developments of digital staining and stain transfer methods, 

stain-guided learning, tissue segmentation and classification, as well as artefact 

detection and unsupervised pre-training. Many research groups do not have the 

resources to digitise large numbers of slides and can only conduct research with 

publicly available data. Current incentives in academia do not always encourage 

data sharing, and I therefore hope that this data set can aid in advancing the field 

of computational pathology.  

The final study of this thesis, Study V, is an application example of WSI registration. 

I intended to showcase how current WSI registration methods can be used to 

answer research questions in computational pathology. I believe that besides the 

performance of WSI registration methods, their increasing ease of use will lead to 

a broader proliferation of these methods for research that requires fusing 

information from multiple WSIs. Therefore, I expect that the proportion of studies 

deploying WSI registration will increase during the coming years.  

However, despite the rapid advances in computational pathology in research 

studies in recent years, the impact on clinical practice is as of yet limited [45], 

[109]. To this day, relatively few regulatory approved applications, e.g. compared 



to radiology, are available. Reis-Filho and Kather recently identified five obstacles 

that currently prevent the broad application of computational pathology tools into 

clinical routines [109]. First, there can be cultural resistance to new technologies 

in healthcare systems if the current approaches appear to work sufficiently well. 

Second, differences in tissue cutting, fixation and staining procedures can lead to 

diverging algorithm performances for different laboratories, which might then 

necessitate laboratory-specific validation or calibration. Third, validation of 

computational pathology biomarkers needs to be as rigorous as for e.g. genetic 

biomarkers, but current studies often lack external validation or sufficiently 

complete reporting of results to assess limitations. Fourth, there are rapidly 

evolving regulatory requirements, which can make it difficult for companies to 

bring their products to market. Fifth, there is a high initial cost for scanners when 

transitioning to digital pathology workflows, while the benefit in cost or patient 

outcomes is yet unclear. Despite these limitations, it is expected that 

computational pathology will have a significant impact on clinical routines during 

the next decades.  

As Reis-Filho and Kather point out, rigorous validation in external data is essential. 

Future work might therefore be necessary to gather further evidence for the 

findings of this thesis and many current studies in the field. However, the 

incentives in academia might not favour such validation studies but rather reward 

novelty. Nevertheless, I believe that e.g. further validating the findings from the 

ACROBAT challenge with data from other institutions and organs is a worthwhile 

endeavour. We are currently attempting to lay the groundwork for this with the 

ACROBAT 2023 challenge, which adds undisclosed IHC stains and IHC-IHC image 

pairs to the test set, albeit still from the SöS study. Computational pathology 

methods also have the potential to expand global access to precision diagnostics. 

However, rigorous validation in the respective populations will be crucial. It is 

therefore essential to begin data collection for these validation studies as soon as 

possible to guarantee patient safety globally, particularly in resource-constrained 

environments where patients may be less protected through appropriate 

regulatory frameworks. Besides a lack of external validation, another current 

limitation of the field could be data set sizes. In order to fully unlock the potential 

of AI to identify patterns that human experts may not yet have discovered, AI 

models need to be trained with labels that are not based on human expertise, such 

as outcome data. Current data set sizes, particularly in breast cancer where many 

patients are cured, may still be insufficient to train models directly with outcome 
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data such as recurrences due to small numbers of events. Furthermore, there is a 

lack of standardisation both for image acquisition and formats, as well as 

pathology reports. This lack of standardisation makes data curation and 

preparation for large-scale studies very laborious. Without standardisation of 

pathology reports, it can be difficult to obtain consistent information across data 

sources. The DICOM standard may alleviate divergent imaging formats. Structured 

and standardised reporting is an active area of research that can improve the 

completeness of information in pathology reports [110]. This may in turn aid 

computational pathology through consistently providing necessary information 

for training and labels. While these are limitations that are unlikely to be solved 

through methods development, there are also remaining challenges that could be 

overcome through technological improvements. One such limitation is the 

generalisation of methods across different laboratories, where differences in 

sample preparation and image acquisition procedures can pose substantial 

challenges. This does not only affect algorithm performances, but also calibration, 

which is necessary for the deployment of methods. Research into image 

normalisation and domain generalisation techniques will therefore be crucial. I did 

not actively pursue work in this area in terms of this thesis, but believe that 

research in this field is essential for the clinical translation of computational 

pathology methods. 
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8 Conclusions 
In this thesis, I focused on the development, application, and evaluation of 

methods for gene expression prediction from WSIs, as well as WSI registration 

methods. While the gene expression prediction methods evaluated in Study II 

ultimately appear to not improve prediction performance, the method proposed 

in Study I offers a computationally highly efficient approach for end-to-end 

training that may improve prediction performance. The ACROBAT challenge and 

its associated data set could significantly advance the narrow field of WSI 

registration, as it is currently the most thorough comparison of WSI registration 

methods. The data set is the to date largest publicly available data set with WSIs 

of multiple stains from the same tumour, which may enable many avenues of 

research in the field, which is still limited through data availability. In Study V, we 

could demonstrate how WSI registration can facilitate the investigation of novel 

research questions. The main limitation of the studies is the lack of validation in 

external data. Nevertheless, I believe that the findings of this thesis will prove 

useful for the computational pathology research community. While there are 

many interesting directions for future work, I believe that particularly the rigorous 

validation of existing studies is currently the most pressing. Furthermore, the 

investigation of methods that improve generalisation across data sources is 

crucial to facilitate the translation of research findings into tools that can benefit 

patients. 
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