1,528 research outputs found

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied

    Setting the parameters right for two-hop IEEE 802.11e ad hoc networks

    Get PDF
    Two-hop ad-hoc networks, in which some nodes forward traffic for multiple sources, with which they also compete for channel access suffer from large queues building up in bottleneck nodes. This problem can often be alleviated by using IEEE 802.11e to give preferential treatment to bottleneck nodes. Previous results have shown that differentiation parameters can be used to allocate capacity in a more efficient way in the two-hop scenario. However, the overall throughput of the bottleneck may differ considerably, depending on the differentiation method used. By applying a very fast and accurate analysis method, based on steady-state analysis of an QBD-type infinite Markov chain, we find the maximum throughput that is possible per differentiation parameter. All possible parameter settings are explored with respect to the maximum throughput conditioned on a maximum buffer occupancy. This design space exploration cannot be done with network simulators like NS2 or Opnet, as each simulation run simply takes to long.\ud The results, which have been validated by detailed simulations, show that by differentiating TXOP it is possible to achieve a throughput that is about 50% larger than when differentiating AIFS and CW_min.\u

    Supporting Service Differentiation with Enhancements of the IEEE 802.11 MAC Protocol: Models and Analysis

    Get PDF
    As one of the fastest growing wireless access technologies, Wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordination Function (DCF) lack this ability. Work is in progress to define an enhanced version capable of supporting QoS for multimedia traffic at the MAC layer. In this paper, we aim at gaining insight into three mechanisms to differentiate among traffic categories, i.e., differentiating the minimum contention window size, the Inter-Frame Spacing (IFS) and the length of the packet payload according to the priority of different traffic categories. We propose an analysis model to compute the throughput and packet transmission delays. In additions, we derive approximations to get simpler but more meaningful relationships among different parameters. Comparisons with discrete-event simulation results show that a very good accuracy of performance evaluation can be achieved by using the proposed analysis model

    Modeling link adaptation algorithm for IEEE 802.11 wireless LAN networks

    Get PDF

    Random Access Game and Medium Access Control Design

    Get PDF
    Motivated partially by a control-theoretic viewpoint, we propose a game-theoretic model, called random access game, for contention control. We characterize Nash equilibria of random access games, study their dynamics, and propose distributed algorithms (strategy evolutions) to achieve Nash equilibria. This provides a general analytical framework that is capable of modeling a large class of system-wide quality-of-service (QoS) models via the specification of per-node utility functions, in which system-wide fairness or service differentiation can be achieved in a distributed manner as long as each node executes a contention resolution algorithm that is designed to achieve the Nash equilibrium. We thus propose a novel medium access method derived from carrier sense multiple access/collision avoidance (CSMA/CA) according to distributed strategy update mechanism achieving the Nash equilibrium of random access game. We present a concrete medium access method that adapts to a continuous contention measure called conditional collision probability, stabilizes the network into a steady state that achieves optimal throughput with targeted fairness (or service differentiation), and can decouple contention control from handling failed transmissions. In addition to guiding medium access control design, the random access game model also provides an analytical framework to understand equilibrium and dynamic properties of different medium access protocols

    An analytical packet/flow-level modelling approach for wireless LANs with Quality-of-Service support

    Get PDF
    We present an analytical packet/flow-level modelling approach for the performance analysis of IEEE 802.11e WLAN, where we explicitly take into account QoS differentiation mechanisms based on minimum contention window size values and Arbitration InterFrame Space (AIFS) values, as included in the Enhanced Distributed Channel Access (EDCA) protocol of the 802.11e standard. We first enhance the packet-level approach previously used for best-effort WLANs to include traffic classes with different QoS requirements. The packet-level model approach yields service weights that discriminate among traffic classes. From these observations, the packet/flow-level model for 802.11e is the \textit{generalized} discriminatory processor-sharing (GDPS) queueing model where the state-dependent system capacity is distributed among active traffic classes according to state-dependent priority weights. Extensive simulations show that the discriminatory processor-sharing model closely represents the flow behavior of 802.11e
    corecore