55 research outputs found

    An analysis of the practical DPG method

    Full text link
    In this work we give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree pp on each mesh element. Earlier works showed that there is a "trial-to-test" operator TT, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator TT is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply TT. In practical computations, TT is approximated using polynomials of some degree r>pr > p on each mesh element. We show that this approximation maintains optimal convergence rates, provided that r≥p+Nr\ge p+N, where NN is the space dimension (two or more), for the Laplace equation. We also prove a similar result for the DPG method for linear elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also included.Comment: Mathematics of Computation, 201

    An Analysis of the Practical DPG Method

    Get PDF
    We give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree p on each mesh element. Earlier works showed that there is a trial-to-test operator T, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator T is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply T. In practical computations, T is approximated using polynomials of some degree r \u3e p on each mesh element. We show that this approximation maintains optimal convergence rates, provided that r p + N, where N is the space dimension (two or more), for the Laplace equation. We also prove a similar result for the DPG method for linear elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also included

    Convergence rates of the DPG method with reduced test space degree

    Get PDF
    This paper presents a duality theorem of the Aubin-Nitsche type for discontinuous Petrov Galerkin (DPG) methods. This explains the numerically observed higher convergence rates in weaker norms. Considering the specific example of the mild-weak (or primal) DPG method for the Laplace equation, two further results are obtained. First, the DPG method continues to be solvable even when the test space degree is reduced, provided it is odd. Second, a non-conforming method of analysis is developed to explain the numerically observed convergence rates for a test space of reduced degree

    First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems

    Full text link
    We present and analyze a first order least squares method for convection dominated diffusion problems, which provides robust L2 a priori error estimate for the scalar variable even if the given data f in L2 space. The novel theoretical approach is to rewrite the method in the framework of discontinuous Petrov - Galerkin (DPG) method, and then show numerical stability by using a key equation discovered by J. Gopalakrishnan and W. Qiu [Math. Comp. 83(2014), pp. 537-552]. This new approach gives an alternative way to do numerical analysis for least squares methods for a large class of differential equations. We also show that the condition number of the global matrix is independent of the diffusion coefficient. A key feature of the method is that there is no stabilization parameter chosen empirically. In addition, Dirichlet boundary condition is weakly imposed. Numerical experiments verify our theoretical results and, in particular, show our way of weakly imposing Dirichlet boundary condition is essential to the design of least squares methods - numerical solutions on subdomains away from interior layers or boundary layers have remarkable accuracy even on coarse meshes, which are unstructured quasi-uniform
    • …
    corecore