17 research outputs found

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Proceedings of The 13. Nordic Workshop on Secure IT Systems, NordSec 2008, Kongens Lyngby Oct 9-10, 2008

    Get PDF

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Practical Analysis of Encrypted Network Traffic

    Get PDF
    The growing use of encryption in network communications is an undoubted boon for user privacy. However, the limitations of real-world encryption schemes are still not well understood, and new side-channel attacks against encrypted communications are disclosed every year. Furthermore, encrypted network communications, by preventing inspection of packet contents, represent a significant challenge from a network security perspective: our existing infrastructure relies on such inspection for threat detection. Both problems are exacerbated by the increasing prevalence of encrypted traffic: recent estimates suggest that 65% or more of downstream Internet traffic will be encrypted by the end of 2016. This work addresses these problems by expanding our understanding of the properties and characteristics of encrypted network traffic and exploring new, specialized techniques for the handling of encrypted traffic by network monitoring systems. We first demonstrate that opaque traffic, of which encrypted traffic is a subset, can be identified in real-time and how this ability can be leveraged to improve the capabilities of existing IDS systems. To do so, we evaluate and compare multiple methods for rapid identification of opaque packets, ultimately pinpointing a simple hypothesis test (which can be implemented on an FPGA) as an efficient and effective detector of such traffic. In our experiments, using this technique to “winnow”, or filter, opaque packets from the traffic load presented to an IDS system significantly increased the throughput of the system, allowing the identification of many more potential threats than the same system without winnowing. Second, we show that side channels in encrypted VoIP traffic enable the reconstruction of approximate transcripts of conversations. Our approach leverages techniques from linguistics, machine learning, natural language processing, and machine translation to accomplish this task despite the limited information leaked by such side channels. Our ability to do so underscores both the potential threat to user privacy which such side channels represent and the degree to which this threat has been underestimated. Finally, we propose and demonstrate the effectiveness of a new paradigm for identifying HTTP resources retrieved over encrypted connections. Our experiments demonstrate how the predominant paradigm from prior work fails to accurately represent real-world situations and how our proposed approach offers significant advantages, including the ability to infer partial information, in comparison. We believe these results represent both an enhanced threat to user privacy and an opportunity for network monitors and analysts to improve their own capabilities with respect to encrypted traffic.Doctor of Philosoph

    An analysis of an HMM-based attack on the substitution cipher with error-prone ciphertext

    No full text

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique
    corecore