90 research outputs found

    A superconvergent HDG method for stokes flow with strongly enforced symmetry of the stress tensor

    Get PDF
    This work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types

    An embedded--hybridized discontinuous Galerkin finite element method for the Stokes equations

    Full text link
    We present and analyze a new embedded--hybridized discontinuous Galerkin finite element method for the Stokes problem. The method has the attractive properties of full hybridized methods, namely an H(div)H({\rm div})-conforming velocity field, pointwise satisfaction of the continuity equation and \emph{a priori} error estimates for the velocity that are independent of the pressure. The embedded--hybridized formulation has advantages over a full hybridized formulation in that it has fewer global degrees-of-freedom for a given mesh and the algebraic structure of the resulting linear system is better suited to fast iterative solvers. The analysis results are supported by a range of numerical examples that demonstrate rates of convergence, and which show computational efficiency gains over a full hybridized formulation

    A superconvergent HDG method for stokes flow with strongly enforced symmetry of the stress tensor

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10915-018-0855-yThis work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types.Peer ReviewedPostprint (author's final draft

    Minimal order H(div)-conforming velocity-vorticity approximations for incompressible fluids

    Full text link
    We introduce a novel minimal order hybrid Discontinuous Galerkin (HDG) and a novel mass conserving mixed stress (MCS) method for the approximation of incompressible flows. For this we employ the H(div⁥)H(\operatorname{div})-conforming linear Brezzi-Douglas-Marini space and the lowest order Raviart-Thomas space for the approximation of the velocity and the vorticity, respectively. Our methods are based on the physically correct diffusive flux −ΜΔ(u)-\nu \varepsilon(u) and provide exactly divergence-free discrete velocity solutions, optimal (pressure robust) error estimates and a minimal number of coupling degrees of freedom. For the stability analysis we introduce a new Korn-like inequality for vector-valued element-wise H1H^1 and normal continuous functions. Numerical examples conclude the work where the theoretical findings are validated and the novel methods are compared in terms of condition numbers with respect to discrete stability parameters
    • 

    corecore