2 research outputs found

    Reproducing single-carrier digital modulation schemes for VLC by controlling the first switching harmonic of the dc-dc power converter output voltage ripple

    Get PDF
    A DC-DC power converter based on a two-phase synchronous buck converter that reproduces single-carrier digital modulation schemes by controlling the first switching harmonic of the output voltage ripple is presented in this work. The DC-DC power converter carries out both the lighting and the transmission functionalities of Visible Light Communication (VLC) transmitters. Control of both the amplitude and the phase of sinusoidal currents injected towards High-Brightness LEDs (HB-LEDs) enables the use of efficient modulation schemes such as Quadrature Amplitude Modulation (QAM), Carrier-less Amplitude and Phase modulation (CAP), Amplitude-Shift Keying (ASK) and Phase-Shift Keying (PSK). These modulation schemes achieve higher spectral efficiency (i.e. more data can be transmitted using the same bandwidth) than previously proposed modulation schemes performed by VLC transmitters based on the use of DC-DC power converters. To the author's knowledge, the ratio between the bit rate achieved and the switching frequency of the DC-DC power converter presented in this paper is the highest that can be found in literatur

    Light sensor development for ARA platform

    Get PDF
    Some years ago Google announced the ARA initiative. This consist on a modular phone where parts of the phone, like cameras, sensors or networks can be changed. So when a new feature appears or requiered by the user it is not needed to change the mobile phone, just to buy the modules with the functionality. See https://www.youtube.com/watch?v=2pr9cV6lvws for further information. The Wireless Networks Group will receive in December a developement kit (http://projectara.com/s/ProjectAraSpiral1DeveloperHardwareManual.pdf), to start working with it on January. The PFC or MasteDuring the last years, Visible Light Communication (VLC), a novel technology that enables standard Light-Emitting-Diodes (LEDs) to transmit data, is gaining significant attention. In the near future, this technology could enable devices containing LEDs – such as car lights, city lights, screens and home appliances – to carry information or data to the end-users, using their smartphone. However, VLC is currently limited by the end-point receiver, such as a the mobile camera, or a peripheral connected through the jack input and to unleash the full potential of VLC, more advanced receiver are required. On other, few year ago, Google ATAP - the Google innovation department - announced the ARA initiative. This consist on a modular phone where parts of the phone, like cameras, sensors or networks can be changed. So when a new feature appears or required by the user it is not needed to change the mobile phone, just to buy the modules with the functionality. This Master Thesis presents the design and development of a simple module that will support communication by light (VLC) using the ARA Module Developer Kit provided by Google. It consists on building a front-end circuit, connecting a photodiode that receives the level of light and use it as data carrier, in order to receive and display data inside a custom Android application on the ARA smartphone
    corecore