19,728 research outputs found

    An almost-linear time algorithm for uniform random spanning tree generation

    Full text link
    We give an m1+o(1)βo(1)m^{1+o(1)}\beta^{o(1)}-time algorithm for generating a uniformly random spanning tree in an undirected, weighted graph with max-to-min weight ratio β\beta. We also give an m1+o(1)ϵo(1)m^{1+o(1)}\epsilon^{-o(1)}-time algorithm for generating a random spanning tree with total variation distance ϵ\epsilon from the true uniform distribution. Our second algorithm's runtime does not depend on the edge weights. Our m1+o(1)βo(1)m^{1+o(1)}\beta^{o(1)}-time algorithm is the first almost-linear time algorithm for the problem --- even on unweighted graphs --- and is the first subquadratic time algorithm for sparse weighted graphs. Our algorithms improve on the random walk-based approach given in Kelner-M\k{a}dry and M\k{a}dry-Straszak-Tarnawski. We introduce a new way of using Laplacian solvers to shortcut a random walk. In order to fully exploit this shortcutting technique, we prove a number of new facts about electrical flows in graphs. These facts seek to better understand sets of vertices that are well-separated in the effective resistance metric in connection with Schur complements, concentration phenomena for electrical flows after conditioning on partial samples of a random spanning tree, and more

    Vacancy localization in the square dimer model

    Get PDF
    We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic classification of the set of all configurations which extends the spanning tree formulation of close-packed dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy to be strictly jammed in an infinite system. More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law decay with exponent 9/8. On a finite system, the probability that a vacancy in the bulk can reach the boundary falls off as a power law of the system size with exponent 1/4. The resultant weak localization of vacancies still allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on spanning trees. We also implement numerical simulations of the model with both free and periodic boundary conditions.Comment: 35 pages, 24 figures. Improved version with one added figure (figure 9), a shift s->s+1 in the definition of the tree size, and minor correction

    Sampling Random Spanning Trees Faster than Matrix Multiplication

    Full text link
    We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in O~(n4/3m1/2+n2)\tilde{O}(n^{4/3}m^{1/2}+n^{2}) time (The O~()\tilde{O}(\cdot) notation hides polylog(n)\operatorname{polylog}(n) factors). The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, O(nω)O(n^\omega). For the special case of unweighted graphs, this improves upon the best previously known running time of O~(min{nω,mn,m4/3})\tilde{O}(\min\{n^{\omega},m\sqrt{n},m^{4/3}\}) for mn5/3m \gg n^{5/3} (Colbourn et al. '96, Kelner-Madry '09, Madry et al. '15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute ϵ\epsilon-approximate effective resistances for a set SS of vertex pairs via approximate Schur complements in O~(m+(n+S)ϵ2)\tilde{O}(m+(n + |S|)\epsilon^{-2}) time, without using the Johnson-Lindenstrauss lemma which requires O~(min{(m+S)ϵ2,m+nϵ4+Sϵ2})\tilde{O}( \min\{(m + |S|)\epsilon^{-2}, m+n\epsilon^{-4} +|S|\epsilon^{-2}\}) time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isn't sufficiently accurate

    Optimal Path and Minimal Spanning Trees in Random Weighted Networks

    Full text link
    We review results on the scaling of the optimal path length in random networks with weighted links or nodes. In strong disorder we find that the length of the optimal path increases dramatically compared to the known small world result for the minimum distance. For Erd\H{o}s-R\'enyi (ER) and scale free networks (SF), with parameter λ\lambda (λ>3\lambda >3), we find that the small-world nature is destroyed. We also find numerically that for weak disorder the length of the optimal path scales logaritmically with the size of the networks studied. We also review the transition between the strong and weak disorder regimes in the scaling properties of the length of the optimal path for ER and SF networks and for a general distribution of weights, and suggest that for any distribution of weigths, the distribution of optimal path lengths has a universal form which is controlled by the scaling parameter Z=/AZ=\ell_{\infty}/A where AA plays the role of the disorder strength, and \ell_{\infty} is the length of the optimal path in strong disorder. The relation for AA is derived analytically and supported by numerical simulations. We then study the minimum spanning tree (MST) and show that it is composed of percolation clusters, which we regard as "super-nodes", connected by a scale-free tree. We furthermore show that the MST can be partitioned into two distinct components. One component the {\it superhighways}, for which the nodes with high centrality dominate, corresponds to the largest cluster at the percolation threshold which is a subset of the MST. In the other component, {\it roads}, low centrality nodes dominate. We demonstrate the significance identifying the superhighways by showing that one can improve significantly the global transport by improving a very small fraction of the network.Comment: review, accepted at IJB

    Fast Generation of Random Spanning Trees and the Effective Resistance Metric

    Full text link
    We present a new algorithm for generating a uniformly random spanning tree in an undirected graph. Our algorithm samples such a tree in expected O~(m4/3)\tilde{O}(m^{4/3}) time. This improves over the best previously known bound of min(O~(mn),O(nω))\min(\tilde{O}(m\sqrt{n}),O(n^{\omega})) -- that follows from the work of Kelner and M\k{a}dry [FOCS'09] and of Colbourn et al. [J. Algorithms'96] -- whenever the input graph is sufficiently sparse. At a high level, our result stems from carefully exploiting the interplay of random spanning trees, random walks, and the notion of effective resistance, as well as from devising a way to algorithmically relate these concepts to the combinatorial structure of the graph. This involves, in particular, establishing a new connection between the effective resistance metric and the cut structure of the underlying graph

    Graph Sparsification by Edge-Connectivity and Random Spanning Trees

    Full text link
    We present new approaches to constructing graph sparsifiers --- weighted subgraphs for which every cut has the same value as the original graph, up to a factor of (1±ϵ)(1 \pm \epsilon). Our first approach independently samples each edge uvuv with probability inversely proportional to the edge-connectivity between uu and vv. The fact that this approach produces a sparsifier resolves a question posed by Bencz\'ur and Karger (2002). Concurrent work of Hariharan and Panigrahi also resolves this question. Our second approach constructs a sparsifier by forming the union of several uniformly random spanning trees. Both of our approaches produce sparsifiers with O(nlog2(n)/ϵ2)O(n \log^2(n)/\epsilon^2) edges. Our proofs are based on extensions of Karger's contraction algorithm, which may be of independent interest
    corecore