4 research outputs found

    A Contribution to Triangulation Algorithms for Simple Polygons

    Get PDF
    Decomposing simple polygon into simpler components is one of the basic tasks in computational geometry and its applications. The most important simple polygon decomposition is triangulation. The known algorithms for polygon triangulation can be classified into three groups: algorithms based on diagonal inserting, algorithms based on Delaunay triangulation, and the algorithms using Steiner points. The paper briefly explains the most popular algorithms from each group and summarizes the common features of the groups. After that four algorithms based on diagonals insertion are tested: a recursive diagonal inserting algorithm, an ear cutting algorithm, Kong’s Graham scan algorithm, and Seidel’s randomized incremental algorithm. An analysis concerning speed, the quality of the output triangles and the ability to handle holes is done at the end

    Abstracts for the twentyfirst European workshop on Computational geometry, Technische Universiteit Eindhoven, The Netherlands, March 9-11, 2005

    Get PDF
    This volume contains abstracts of the papers presented at the 21st European Workshop on Computational Geometry, held at TU Eindhoven (the Netherlands) on March 9–11, 2005. There were 53 papers presented at the Workshop, covering a wide range of topics. This record number shows that the field of computational geometry is very much alive in Europe. We wish to thank all the authors who submitted papers and presented their work at the workshop. We believe that this has lead to a collection of very interesting abstracts that are both enjoyable and informative for the reader. Finally, we are grateful to TU Eindhoven for their support in organizing the workshop and to the Netherlands Organisation for Scientific Research (NWO) for sponsoring the workshop

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore