168,759 research outputs found

    Optimal Stabilization using Lyapunov Measures

    Full text link
    Numerical solutions for the optimal feedback stabilization of discrete time dynamical systems is the focus of this paper. Set-theoretic notion of almost everywhere stability introduced by the Lyapunov measure, weaker than conventional Lyapunov function-based stabilization methods, is used for optimal stabilization. The linear Perron-Frobenius transfer operator is used to pose the optimal stabilization problem as an infinite dimensional linear program. Set-oriented numerical methods are used to obtain the finite dimensional approximation of the linear program. We provide conditions for the existence of stabilizing feedback controls and show the optimal stabilizing feedback control can be obtained as a solution of a finite dimensional linear program. The approach is demonstrated on stabilization of period two orbit in a controlled standard map

    A Region-Dependent Gain Condition for Asymptotic Stability

    Full text link
    A sufficient condition for the stability of a system resulting from the interconnection of dynamical systems is given by the small gain theorem. Roughly speaking, to apply this theorem, it is required that the gains composition is continuous, increasing and upper bounded by the identity function. In this work, an alternative sufficient condition is presented for the case in which this criterion fails due to either lack of continuity or the bound of the composed gain is larger than the identity function. More precisely, the local (resp. non-local) asymptotic stability of the origin (resp. global attractivity of a compact set) is ensured by a region-dependent small gain condition. Under an additional condition that implies convergence of solutions for almost all initial conditions in a suitable domain, the almost global asymptotic stability of the origin is ensured. Two examples illustrate and motivate this approach

    Non-Smooth Stochastic Lyapunov Functions With Weak Extension of Viscosity Solutions

    Full text link
    This paper proposes a notion of viscosity weak supersolutions to build a bridge between stochastic Lyapunov stability theory and viscosity solution theory. Different from ordinary differential equations, stochastic differential equations can have the origins being stable despite having no smooth stochastic Lyapunov functions (SLFs). The feature naturally requires that the related Lyapunov equations are illustrated via viscosity solution theory, which deals with non-smooth solutions to partial differential equations. This paper claims that stochastic Lyapunov stability theory needs a weak extension of viscosity supersolutions, and the proposed viscosity weak supersolutions describe non-smooth SLFs ensuring a large class of the origins being noisily (asymptotically) stable and (asymptotically) stable in probability. The contribution of the non-smooth SLFs are confirmed by a few examples; especially, they ensure that all the linear-quadratic-Gaussian (LQG) controlled systems have the origins being noisily asymptotically stable for any additive noises

    Output-input stability and minimum-phase nonlinear systems

    Full text link
    This paper introduces and studies the notion of output-input stability, which represents a variant of the minimum-phase property for general smooth nonlinear control systems. The definition of output-input stability does not rely on a particular choice of coordinates in which the system takes a normal form or on the computation of zero dynamics. In the spirit of the ``input-to-state stability'' philosophy, it requires the state and the input of the system to be bounded by a suitable function of the output and derivatives of the output, modulo a decaying term depending on initial conditions. The class of output-input stable systems thus defined includes all affine systems in global normal form whose internal dynamics are input-to-state stable and also all left-invertible linear systems whose transmission zeros have negative real parts. As an application, we explain how the new concept enables one to develop a natural extension to nonlinear systems of a basic result from linear adaptive control.Comment: Revised version, to appear in IEEE Transactions on Automatic Control. See related work in http://www.math.rutgers.edu/~sontag and http://black.csl.uiuc.edu/~liberzo

    On the Relation of Delay Equations to First-Order Hyperbolic Partial Differential Equations

    Full text link
    This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on the boundary and/or on the differential equation. An illustrative example shows that the conversion of a system described by a single first-order hyperbolic partial differential equation to an integral delay system can simplify considerably the solution of the corresponding robust feedback stabilization problem.Comment: 32 pages, submitted for possible publication to ESAIM COC

    Input-Output-to-State Stability

    Full text link
    This work explores Lyapunov characterizations of the input-output-to-state stability (IOSS) property for nonlinear systems. The notion of IOSS is a natural generalization of the standard zero-detectability property used in the linear case. The main contribution of this work is to establish a complete equivalence between the input-output-to-state stability property and the existence of a certain type of smooth Lyapunov function. As corollaries, one shows the existence of ``norm-estimators'', and obtains characterizations of nonlinear detectability in terms of relative stability and of finite-energy estimates.Comment: Many related papers can be found in: http://www.math.rutgers.edu/~sonta

    Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control

    Full text link
    The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of individuals carrying the Wolbachia parasite that need to be introduced into the natural population. The introduced mosquitoes are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this study, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then use feedback control techniques to devise an introduction protocol which is proved to guarantee that the population converges to a stable equilibrium where the totality of mosquitoes carry Wolbachia.Comment: 24 pages, 5 figure
    • …
    corecore