The control of the spread of dengue fever by introduction of the
intracellular parasitic bacterium Wolbachia in populations of the vector Aedes
aegypti, is presently one of the most promising tools for eliminating dengue,
in the absence of an efficient vaccine. The success of this operation requires
locally careful planning to determine the adequate number of individuals
carrying the Wolbachia parasite that need to be introduced into the natural
population. The introduced mosquitoes are expected to eventually replace the
Wolbachia-free population and guarantee permanent protection against the
transmission of dengue to human.
In this study, we propose and analyze a model describing the fundamental
aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes
free of the parasite. We then use feedback control techniques to devise an
introduction protocol which is proved to guarantee that the population
converges to a stable equilibrium where the totality of mosquitoes carry
Wolbachia.Comment: 24 pages, 5 figure