33,544 research outputs found

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure

    Generation and Analysis of Constrained Random Sampling Patterns

    Full text link
    Random sampling is a technique for signal acquisition which is gaining popularity in practical signal processing systems. Nowadays, event-driven analog-to-digital converters make random sampling feasible in practical applications. A process of random sampling is defined by a sampling pattern, which indicates signal sampling points in time. Practical random sampling patterns are constrained by ADC characteristics and application requirements. In this paper authors introduce statistical methods which evaluate random sampling pattern generators with emphasis on practical applications. Furthermore, the authors propose a new random pattern generator which copes with strict practical limitations imposed on patterns, with possibly minimal loss in randomness of sampling. The proposed generator is compared with existing sampling pattern generators using the introduced statistical methods. It is shown that the proposed algorithm generates random sampling patterns dedicated for event-driven-ADCs better than existed sampling pattern generators. Finally, implementation issues of random sampling patterns are discussed.Comment: 29 pages, 12 figures, submitted to Circuits, Systems and Signal Processing journa
    • …
    corecore