4,759 research outputs found

    Maximum Skew-Symmetric Flows and Matchings

    Full text link
    The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow and maximum matching problems. It was introduced by Tutte in terms of self-conjugate flows in antisymmetrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We give unified and shorter proofs for those theoretical results. We then extend to MSFP the shortest augmenting path method of Edmonds and Karp and the blocking flow method of Dinits, obtaining algorithms with similar time bounds in general case. Moreover, in the cases of unit arc capacities and unit ``node capacities'' the blocking skew-symmetric flow algorithm has time bounds similar to those established in Even and Tarjan (1975) and Karzanov (1973) for Dinits' algorithm. In particular, this implies an algorithm for finding a maximum matching in a nonbipartite graph in O(nm)O(\sqrt{n}m) time, which matches the time bound for the algorithm of Micali and Vazirani. Finally, extending a clique compression technique of Feder and Motwani to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to run in O(nmlog(n2/m)/logn)O(\sqrt{n}m\log(n^2/m)/\log{n}) time, improving the best known bound for dense nonbipartite graphs. Also other theoretical and algorithmic results on skew-symmetric flows and their applications are presented.Comment: 35 pages, 3 figures, to appear in Mathematical Programming, minor stylistic corrections and shortenings to the original versio

    On the Greedy Algorithm for the Shortest Common Superstring Problem with Reversals

    Full text link
    We study a variation of the classical Shortest Common Superstring (SCS) problem in which a shortest superstring of a finite set of strings SS is sought containing as a factor every string of SS or its reversal. We call this problem Shortest Common Superstring with Reversals (SCS-R). This problem has been introduced by Jiang et al., who designed a greedy-like algorithm with length approximation ratio 44. In this paper, we show that a natural adaptation of the classical greedy algorithm for SCS has (optimal) compression ratio 12\frac12, i.e., the sum of the overlaps in the output string is at least half the sum of the overlaps in an optimal solution. We also provide a linear-time implementation of our algorithm.Comment: Published in Information Processing Letter

    A polynomial delay algorithm for the enumeration of bubbles with length constraints in directed graphs and its application to the detection of alternative splicing in RNA-seq data

    Full text link
    We present a new algorithm for enumerating bubbles with length constraints in directed graphs. This problem arises in transcriptomics, where the question is to identify all alternative splicing events present in a sample of mRNAs sequenced by RNA-seq. This is the first polynomial-delay algorithm for this problem and we show that in practice, it is faster than previous approaches. This enables us to deal with larger instances and therefore to discover novel alternative splicing events, especially long ones, that were previously overseen using existing methods.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Shortest Path and Distance Queries on Road Networks: An Experimental Evaluation

    Full text link
    Computing the shortest path between two given locations in a road network is an important problem that finds applications in various map services and commercial navigation products. The state-of-the-art solutions for the problem can be divided into two categories: spatial-coherence-based methods and vertex-importance-based approaches. The two categories of techniques, however, have not been compared systematically under the same experimental framework, as they were developed from two independent lines of research that do not refer to each other. This renders it difficult for a practitioner to decide which technique should be adopted for a specific application. Furthermore, the experimental evaluation of the existing techniques, as presented in previous work, falls short in several aspects. Some methods were tested only on small road networks with up to one hundred thousand vertices; some approaches were evaluated using distance queries (instead of shortest path queries), namely, queries that ask only for the length of the shortest path; a state-of-the-art technique was examined based on a faulty implementation that led to incorrect query results. To address the above issues, this paper presents a comprehensive comparison of the most advanced spatial-coherence-based and vertex-importance-based approaches. Using a variety of real road networks with up to twenty million vertices, we evaluated each technique in terms of its preprocessing time, space consumption, and query efficiency (for both shortest path and distance queries). Our experimental results reveal the characteristics of different techniques, based on which we provide guidelines on selecting appropriate methods for various scenarios.Comment: VLDB201
    corecore