3,001 research outputs found

    An algorithm for simulating the Ising model on a type-II quantum computer

    Full text link
    Presented here is an algorithm for a type-II quantum computer which simulates the Ising model in one and two dimensions. It is equivalent to the Metropolis Monte-Carlo method and takes advantage of quantum superposition for random number generation. This algorithm does not require the ensemble of states to be measured at the end of each iteration, as is required for other type-II algorithms. Only the binary result is measured at each node which means this algorithm could be implemented using a range of different quantum computing architectures. The Ising model provides an example of how cellular automata rules can be formulated to be run on a type-II quantum computer.Comment: 14 pages, 11 figures. Accepted for publication in Computer Physics Communication

    Simulating Ising Spin Glasses on a Quantum Computer

    Full text link
    A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus approximated efficiently. The algorithm neither suffers from critical slowing down, nor gets stuck in local minima. The algorithm can be A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus approximated efficiently. The algorithm neither suffers from critical slowing down, nor gets stuck in local minima. The algorithm can be applied in any dimension, to a class of spin-glass Ising models with a finite portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field. applied in any dimension, to a class of spin-glass Ising models with a finite portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field.Comment: 24 pages, 3 epsf figures, replaced with published and significantly revised version. More info available at http://www.fh.huji.ac.il/~dani/ and http://www.fiz.huji.ac.il/staff/acc/faculty/biha

    Thermalization, Error-Correction, and Memory Lifetime for Ising Anyon Systems

    Full text link
    We consider two-dimensional lattice models that support Ising anyonic excitations and are coupled to a thermal bath. We propose a phenomenological model for the resulting short-time dynamics that includes pair-creation, hopping, braiding, and fusion of anyons. By explicitly constructing topological quantum error-correcting codes for this class of system, we use our thermalization model to estimate the lifetime of the quantum information stored in the encoded spaces. To decode and correct errors in these codes, we adapt several existing topological decoders to the non-Abelian setting. We perform large-scale numerical simulations of these two-dimensional Ising anyon systems and find that the thresholds of these models range between 13% to 25%. To our knowledge, these are the first numerical threshold estimates for quantum codes without explicit additive structure.Comment: 34 pages, 9 figures; v2 matches the journal version and corrects a misstatement about the detailed balance condition of our Metropolis simulations. All conclusions from v1 are unaffected by this correctio

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio
    corecore