60,527 research outputs found

    SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

    Get PDF
    Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specific distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is difficult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively different possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions - spatial, social, and temporal - of human mobility. The way SPoT does it is by mapping the different social communities of the network into different locations, whose members visit with a configurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge

    Some comments on C. S. Wallace's random number generators

    Full text link
    We outline some of Chris Wallace's contributions to pseudo-random number generation. In particular, we consider his idea for generating normally distributed variates without relying on a source of uniform random numbers, and compare it with more conventional methods for generating normal random numbers. Implementations of Wallace's idea can be very fast (approximately as fast as good uniform generators). We discuss the statistical quality of the output, and mention how certain pitfalls can be avoided.Comment: 13 pages. For further information, see http://wwwmaths.anu.edu.au/~brent/pub/pub213.htm

    Algorithms for randomness in the behavioral sciences: A tutorial

    Get PDF
    Simulations and experiments frequently demand the generation of random numbera that have specific distributions. This article describes which distributions should be used for the most cammon problems and gives algorithms to generate the numbers.It is also shown that a commonly used permutation algorithm (Nilsson, 1978) is deficient
    • …
    corecore