301 research outputs found

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    Finding a Maximum Restricted tt-Matching via Boolean Edge-CSP

    Full text link
    The problem of finding a maximum 22-matching without short cycles has received significant attention due to its relevance to the Hamilton cycle problem. This problem is generalized to finding a maximum tt-matching which excludes specified complete tt-partite subgraphs, where tt is a fixed positive integer. The polynomial solvability of this generalized problem remains an open question. In this paper, we present polynomial-time algorithms for the following two cases of this problem: in the first case the forbidden complete tt-partite subgraphs are edge-disjoint; and in the second case the maximum degree of the input graph is at most 2t−12t-1. Our result for the first case extends the previous work of Nam (1994) showing the polynomial solvability of the problem of finding a maximum 22-matching without cycles of length four, where the cycles of length four are vertex-disjoint. The second result expands upon the works of B\'{e}rczi and V\'{e}gh (2010) and Kobayashi and Yin (2012), which focused on graphs with maximum degree at most t+1t+1. Our algorithms are obtained from exploiting the discrete structure of restricted tt-matchings and employing an algorithm for the Boolean edge-CSP.Comment: 20 pages, 2 figure

    Subgraph Pattern Matching over Uncertain Graphs with Identity Linkage Uncertainty

    Get PDF
    There is a growing need for methods which can capture uncertainties and answer queries over graph-structured data. Two common types of uncertainty are uncertainty over the attribute values of nodes and uncertainty over the existence of edges. In this paper, we combine those with identity uncertainty. Identity uncertainty represents uncertainty over the mapping from objects mentioned in the data, or references, to the underlying real-world entities. We propose the notion of a probabilistic entity graph (PEG), a probabilistic graph model that defines a distribution over possible graphs at the entity level. The model takes into account node attribute uncertainty, edge existence uncertainty, and identity uncertainty, and thus enables us to systematically reason about all three types of uncertainties in a uniform manner. We introduce a general framework for constructing a PEG given uncertain data at the reference level and develop highly efficient algorithms to answer subgraph pattern matching queries in this setting. Our algorithms are based on two novel ideas: context-aware path indexing and reduction by join-candidates, which drastically reduce the query search space. A comprehensive experimental evaluation shows that our approach outperforms baseline implementations by orders of magnitude

    Preprocessing Subgraph and Minor Problems: When Does a Small Vertex Cover Help?

    Full text link
    We prove a number of results around kernelization of problems parameterized by the size of a given vertex cover of the input graph. We provide three sets of simple general conditions characterizing problems admitting kernels of polynomial size. Our characterizations not only give generic explanations for the existence of many known polynomial kernels for problems like q-Coloring, Odd Cycle Transversal, Chordal Deletion, Eta Transversal, or Long Path, parameterized by the size of a vertex cover, but also imply new polynomial kernels for problems like F-Minor-Free Deletion, which is to delete at most k vertices to obtain a graph with no minor from a fixed finite set F. While our characterization captures many interesting problems, the kernelization complexity landscape of parameterizations by vertex cover is much more involved. We demonstrate this by several results about induced subgraph and minor containment testing, which we find surprising. While it was known that testing for an induced complete subgraph has no polynomial kernel unless NP is in coNP/poly, we show that the problem of testing if a graph contains a complete graph on t vertices as a minor admits a polynomial kernel. On the other hand, it was known that testing for a path on t vertices as a minor admits a polynomial kernel, but we show that testing for containment of an induced path on t vertices is unlikely to admit a polynomial kernel.Comment: To appear in the Journal of Computer and System Science

    Graph editing problems with extended regularity constraints

    Full text link
    © 2017 Graph editing problems offer an interesting perspective on sub- and supergraph identification problems for a large variety of target properties. They have also attracted significant attention in recent years, particularly in the area of parameterized complexity as the problems have rich parameter ecologies. In this paper we examine generalisations of the notion of editing a graph to obtain a regular subgraph. In particular we extend the notion of regularity to include two variants of edge-regularity along with the unifying constraint of strong regularity. We present a number of results, with the central observation that these problems retain the general complexity profile of their regularity-based inspiration: when the number of edits k and the maximum degree r are taken together as a combined parameter, the problems are tractable (i.e. in FPT), but are otherwise intractable. We also examine variants of the basic editing to obtain a regular subgraph problem from the perspective of parameterizing by the treewidth of the input graph. In this case the treewidth of the input graph essentially becomes a limiting parameter on the natural k+r parameterization

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs
    • …
    corecore