CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Graph editing problems with extended regularity constraints
Authors
L Mathieson
Publication date
3 March 2017
Publisher
'Elsevier BV'
Doi
Cite
View
on
arXiv
Abstract
© 2017 Graph editing problems offer an interesting perspective on sub- and supergraph identification problems for a large variety of target properties. They have also attracted significant attention in recent years, particularly in the area of parameterized complexity as the problems have rich parameter ecologies. In this paper we examine generalisations of the notion of editing a graph to obtain a regular subgraph. In particular we extend the notion of regularity to include two variants of edge-regularity along with the unifying constraint of strong regularity. We present a number of results, with the central observation that these problems retain the general complexity profile of their regularity-based inspiration: when the number of edits k and the maximum degree r are taken together as a combined parameter, the problems are tractable (i.e. in FPT), but are otherwise intractable. We also examine variants of the basic editing to obtain a regular subgraph problem from the perspective of parameterizing by the treewidth of the input graph. In this case the treewidth of the input graph essentially becomes a limiting parameter on the natural k+r parameterization
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.tcs.2017....
Last time updated on 05/06/2019
University of Newcastle's Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 15/12/2017