13 research outputs found

    An Algebraic Approach for Decoding Spread Codes

    Full text link
    In this paper we study spread codes: a family of constant-dimension codes for random linear network coding. In other words, the codewords are full-rank matrices of size (k x n) with entries in a finite field F_q. Spread codes are a family of optimal codes with maximal minimum distance. We give a minimum-distance decoding algorithm which requires O((n-k)k^3) operations over an extension field F_{q^k}. Our algorithm is more efficient than the previous ones in the literature, when the dimension k of the codewords is small with respect to n. The decoding algorithm takes advantage of the algebraic structure of the code, and it uses original results on minors of a matrix and on the factorization of polynomials over finite fields

    Message Encoding for Spread and Orbit Codes

    Full text link
    Spread codes and orbit codes are special families of constant dimension subspace codes. These codes have been well-studied for their error correction capability and transmission rate, but the question of how to encode messages has not been investigated. In this work we show how the message space can be chosen for a given code and how message en- and decoding can be done.Comment: Submitted to IEEE International Symposium on Information Theory 201

    Isometry and Automorphisms of Constant Dimension Codes

    Full text link
    We define linear and semilinear isometry for general subspace codes, used for random network coding. Furthermore, some results on isometry classes and automorphism groups of known constant dimension code constructions are derived

    Partial Spreads in Random Network Coding

    Full text link
    Following the approach by R. K\"otter and F. R. Kschischang, we study network codes as families of k-dimensional linear subspaces of a vector space F_q^n, q being a prime power and F_q the finite field with q elements. In particular, following an idea in finite projective geometry, we introduce a class of network codes which we call "partial spread codes". Partial spread codes naturally generalize spread codes. In this paper we provide an easy description of such codes in terms of matrices, discuss their maximality, and provide an efficient decoding algorithm

    Spread Decoding in Extension Fields

    Full text link
    A spread code is a set of vector spaces of a fixed dimension over a finite field Fq with certain properties used for random network coding. It can be constructed in different ways which lead to different decoding algorithms. In this work we present a new representation of spread codes with a minimum distance decoding algorithm which is efficient when the codewords, the received space and the error space have small dimension.Comment: Submitted for publication to Finite Fields and their Applications (Elsevier

    Cyclic Orbit Codes

    Full text link
    In network coding a constant dimension code consists of a set of k-dimensional subspaces of F_q^n. Orbit codes are constant dimension codes which are defined as orbits of a subgroup of the general linear group, acting on the set of all subspaces of F_q^n. If the acting group is cyclic, the corresponding orbit codes are called cyclic orbit codes. In this paper we give a classification of cyclic orbit codes and propose a decoding procedure for a particular subclass of cyclic orbit codes.Comment: submitted to IEEE Transactions on Information Theor
    corecore