5,752 research outputs found

    Multi-target pig tracking algorithm based on joint probability data association and particle filter

    Get PDF
    In order to evaluate the health status of pigs in time, monitor accurately the disease dynamics of live pigs, and reduce the morbidity and mortality of pigs in the existing large-scale farming model, pig detection and tracking technology based on machine vision are used to monitor the behavior of pigs. However, it is challenging to efficiently detect and track pigs with noise caused by occlusion and interaction between targets. In view of the actual breeding conditions of pigs and the limitations of existing behavior monitoring technology of an individual pig, this study proposed a method that used color feature, target centroid and the minimum circumscribed rectangle length-width ratio as the features to build a multi-target tracking algorithm, which based on joint probability data association and particle filter. Experimental results show the proposed algorithm can quickly and accurately track pigs in the video, and it is able to cope with partial occlusions and recover the tracks after temporary loss

    Visual-Inertial and Leg Odometry Fusion for Dynamic Locomotion

    Full text link
    Implementing dynamic locomotion behaviors on legged robots requires a high-quality state estimation module. Especially when the motion includes flight phases, state-of-the-art approaches fail to produce reliable estimation of the robot posture, in particular base height. In this paper, we propose a novel approach for combining visual-inertial odometry (VIO) with leg odometry in an extended Kalman filter (EKF) based state estimator. The VIO module uses a stereo camera and IMU to yield low-drift 3D position and yaw orientation and drift-free pitch and roll orientation of the robot base link in the inertial frame. However, these values have a considerable amount of latency due to image processing and optimization, while the rate of update is quite low which is not suitable for low-level control. To reduce the latency, we predict the VIO state estimate at the rate of the IMU measurements of the VIO sensor. The EKF module uses the base pose and linear velocity predicted by VIO, fuses them further with a second high-rate IMU and leg odometry measurements, and produces robot state estimates with a high frequency and small latency suitable for control. We integrate this lightweight estimation framework with a nonlinear model predictive controller and show successful implementation of a set of agile locomotion behaviors, including trotting and jumping at varying horizontal speeds, on a torque-controlled quadruped robot.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA), 202

    3-D Scene Reconstruction from Aerial Imagery

    Get PDF
    3-D scene reconstructions derived from Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques were analyzed to determine the optimal reconnaissance flight characteristics suitable for target reconstruction. In support of this goal, a preliminary study of a simple 3-D geometric object facilitated the analysis of convergence angles and number of camera frames within a controlled environment. Reconstruction accuracy measurements revealed at least 3 camera frames and a 6 convergence angle were required to achieve results reminiscent of the original structure. The central investigative effort sought the applicability of certain airborne reconnaissance flight profiles to reconstructing ground targets. The data sets included images collected within a synthetic 3-D urban environment along circular, linear and s-curve aerial flight profiles equipped with agile and non-agile sensors. S-curve and dynamically controlled linear flight paths provided superior results, whereas with sufficient data conditioning and combination of orthogonal flight paths, all flight paths produced quality reconstructions under a wide variety of operational considerations

    The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    Get PDF
    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications

    De-interleaving of Radar Pulses for EW Receivers with an ELINT Application

    Get PDF
    De-interleaving is a critical function in Electronic Warfare (EW) that has not received much attention in the literature regarding on-line Electronic Intelligence (ELINT) application. In ELINT, on-line analysis is important in order to allow for efficient data collection and for support of operational decisions. This dissertation proposed a de-interleaving solution for use with ELINT/Electronic-Support-Measures (ESM) receivers for purposes of ELINT with on-line application. The proposed solution does not require complex integration with existing EW systems or modifications to their sub-systems. Before proposing the solution, on-line de-interleaving algorithms were surveyed. Density-based spatial clustering of applications with noise (DBSCAN) is a clustering algorithm that has not been used before in de-interleaving; in this dissertation, it has proved to be effective. DBSCAN was thus selected as a component of the proposed de-interleaving solution due to its advantages over other surveyed algorithms. The proposed solution relies primarily on the parameters of Angle of Arrival (AOA), Radio Frequency (RF), and Time of Arrival (TOA). The time parameter was utilized in resolving RF agility. The solution is a system that is composed of different building blocks. The solution handles complex radar environments that include agility in RF, Pulse Width (PW), and Pulse Repetition Interval (PRI)

    Robust Active Visual Perching with Quadrotors on Inclined Surfaces

    Full text link
    Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to 90∘90^\circ. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90∘^\circ, angular speeds up to 750~deg/s, and accelerations up to 10~m/s2^2
    • …
    corecore