9 research outputs found

    Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications

    Full text link
    [EN] Newer social multimedia applications, such as Social TV or networked multi-player games, enable independent groups (or clusters) of users to interact among themselves and share services within the context of simultaneous media content consumption. In such scenarios, concurrently synchronized playout points must be ensured so as not to degrade the user experience on such interaction. We refer to this process as Inter-Destination Multimedia Synchronization (IDMS). This paper presents the design, implementation and evaluation of an evolved version of an RTCP-based IDMS approach, including an Adaptive Media Playout (AMP) scheme that aims to dynamically and smoothly adjust the playout timing of each one of the geographically distributed consumers in a specific cluster if an allowable asynchrony threshold between their playout states is exceeded. For that purpose, we previously had also to develop a full implementation of RTP/RTCP protocols for NS-2, in which we included the IDMS approach as an optional functionality. Simulation results prove the feasibility of such IDMS and AMP proposals, by adopting several dynamic master reference selection policies, to maintain an overall synchronization status (within allowable limits) in each cluster of participants, while minimizing the occurrence of long-term playout discontinuities (such as skips/pauses) which are subjectively more annoying and less tolerable to users than small variations in the media playout rate.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10. Authors also would like to thank the anonymous reviewers that helped to significantly improve the quality of the paper with their constructive comments.Montagud, M.; Boronat, F. (2012). Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications. Computer Networks. 56(12):2912-2933. https://doi.org/10.1016/j.comnet.2012.05.00329122933561

    Impact of network dynamics on user\u27s video quality : analytical framework and QoS provision

    Full text link

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    Estudio del rendimiento de arquitecturas basadas en grupos para WAHSN

    Full text link
    [ES] Existen muchos trabajos relacionados con las redes ad hoc y las redes de sensores donde se presentan nuevos protocolos que encaminamiento que aportan mejores características, otros trabajos donde se comparan para ver cual posee un mejor rendimiento ó incluso presentan nuevas aplicaciones basadas en este tipo de redes, pero este trabajo aporta otro punto de vista. ¿Por que no ver la red como un conjunto que se divide en grupos para aportar un mejor rendimiento a la red independientemente del protocolo de encaminamiento utilizado?. Para ello, en este trabajo, vamos a demostrar a través de simulaciones, que la agrupación de nodos en redes WAHSN (Wireless Ad Hoc & Sensor Networks) aporta mejoras a la red en general, disminuyendo el tráfico de encaminamiento, el retardo, el throughput, etc. Este estudio se ha realizado evaluando los protocolos estándar más utilizados (DSR [1], AODV [2] y OLSR [3]), así podemos observar cual de ellos aporta un mejor rendimiento. Finalmente, se propone una arquitectura de red basada en grupos optimizada para las redes WAHSN[EN] There are many works related with ad hoc networks and sensor networks where the authors present new routing protocols with better or enhanced features, others just compare the performance of them or present an application environment, but this work tries to give another point of view. Why don¿t we see the network as a whole and split it intro groups to give better performance to the network regardless of the used routing protocol?. First, we will demonstrate, through simulations, that grouping nodes in WAHSN (Wireless Ad Hoc & Sensor Networks) improves the whole network by diminishing the routing traffic, the delay, the throughput, etc. This study was conducted to assess the most used standard protocols (DSR [1], AODV [2] and OLSR [3]) that gives better performance to the whole network when there are groups of nodes. Finally, a group-based network architecture optimized for WAHSN is proposedGarcía Pineda, M. (2008). Estudio del rendimiento de arquitecturas basadas en grupos para WAHSN. http://hdl.handle.net/10251/13472Archivo delegad

    Supervision de contenus multimédia : adaptation de contenu, politiques optimales de préchargement et coordination causale de flux

    Get PDF
    La qualité des systèmes d'informations distribués dépend de la pertinence du contenu mis à disposition, de la réactivité du service ainsi que de la cohérence des informations présentées. Nos travaux visent à améliorer ces trois critères de performance et passent par la prise en compte des caractéristiques de l'utilisateur, des ressources disponibles ou plus généralement du contexte d'exécution. Par conséquent, cette thèse comporte trois volets. Le premier volet se place dans le cadre de l'adaptation de systèmes d’information déployés dans des contextes dynamiques et stochastiques. Nous présentons une approche où des agents d’adaptation appliquent des politiques de décision séquentielle dans l'incertain. Nous modélisons ces agents par des Processus Décisionnels de Markov (PDM) selon que le contexte soit observable ou seulement partiellement observable (PDM Partiellement Observables). Dans le cas d’un service mobile de consultation de films, nous montrons en particulier qu’une politique d'adaptation de ce service à des ressources limitées peut être nuancée selon l'intérêt de l'utilisateur, estimé grâce à l’évaluation des signaux de retour implicite. Dans le deuxième volet, nous nous intéressons à l'optimisation de la réactivité d'un système qui propose des contenus hypermédia. Nous nous appuyons sur des techniques de préchargement pour réduire les latences. Comme précédemment, un PDM modélise les habitudes des utilisateurs et les ressources disponibles. La force de ce modèle réside dans sa capacité à fournir des politiques optimales de préchargement. Les premières politiques que nous obtenons sont simples. Nous enrichissons alors le modèle pour dériver des politiques de préchargement plus complexes et plus agressives et montrons leurs performances par simulation. Afin de personnaliser nos stratégies optimales nous proposons finalement un modèle PDMPO dont les politiques s'adaptent aux profils des utilisateurs. Le troisième volet se place dans le contexte des applications multimédia interactives distribuées et concerne le contrôle de la cohérence des flux multimédia répartis. Dans un tel contexte, plusieurs mécanismes de synchronisation sont nécessaires et plusieurs ordres logiques (fifo, causal, total) s'avèrent utiles. Nous proposons une boîte à outils capable de gérer plusieurs protocoles d’ordre partiel et d'assurer une délivrance correcte de chaque message, en respectant tous les ordres qui lui ont été imposés. Nous décrivons ensuite l’intégration des tolérances humaines vis-à-vis des courtes incohérences causales dans notre boîte à outils. Nos simulations montrent que de meilleures performances sont obtenues par cette méthode comparativement à d’autres approches, comme la causalité classique ou la Δ-causalité. ABSTRACT : Distributed systems information quality depends on service responsiveness, data consistency and its relevance according to user interests. The thesis aims to improve these three performance criteria by taking into account user characteristics, available ressources or more generally execution context. Naturally, the document is organized in three main parts. The first part discusses adaptation policies for information systems that are subject to dynamic and stochastic contexts. In our approach adaptation agents apply sequential decisional policies under uncertainty. We focus on the modeling of such decisional processes depending on whether the context is fully or partially observable. We use Markov Decision Processes (MDP) and Partially Observable MDP (POMDP) for modeling a movie browsing service in a mobile environment. Our model derives adaptation policies for this service that take into account the limited (and observable) resources. These policies are further refined according to the (partially observable) users’ interest level estimated from implicit feedback. Our theoretical models are validated through numerous simulations. The second part deals with hypermedia content delivery aiming to reduce navigation latencies by means of prefetching. As previously, we build upon an MDP model able to derive optimal prefetching policies integrating both user behaviour and ressource availability. First, we extend this model and propose more complex and aggressive policies. Second, the extended model is enriched by taking into account user's profile and therefore provides finer prefetching policies. It is worth noting that this model issues personnalized policies without explicily manipulating user profiles. The proposed extensions and the associated policies are validated through comparison with the original model and some heuristic approches. Finally, the third part considers multimedia applications in distributed contexts. In these contexts, highly interactive collaborative applications need to offer each user a consistent view of the interactions represented by the streams exchanged between dispersed groups of users. At the coordination level, strong ordering protocols for capturing and delivering streams' interactions (e.g. CAUSAL, TOTAL order) may be too expensive due to the variability of network conditions. We build upon previous work on expressing streams causality and propose a flexible coordination middleware for integrating different delivery modes (e.g. FIFO, CAUSAL, TOTAL) into a single channel (with respect to each of these protocols). Moreover, the proposed abstract channel can handle the mix of any partial or total order protocols. Integrating perceptual tolerance in our middleware, provides us with a coordination toolkit that performs better than Δ-causality, usually considered the best solutio

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it “in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better results

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it "in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better result

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks
    corecore