10,491 research outputs found

    CEPS Task Force on Artificial Intelligence and Cybersecurity Technology, Governance and Policy Challenges Task Force Evaluation of the HLEG Trustworthy AI Assessment List (Pilot Version). CEPS Task Force Report 22 January 2020

    Get PDF
    The Centre for European Policy Studies launched a Task Force on Artificial Intelligence (AI) and Cybersecurity in September 2019. The goal of this Task Force is to bring attention to the market, technical, ethical and governance challenges posed by the intersection of AI and cybersecurity, focusing both on AI for cybersecurity but also cybersecurity for AI. The Task Force is multi-stakeholder by design and composed of academics, industry players from various sectors, policymakers and civil society. The Task Force is currently discussing issues such as the state and evolution of the application of AI in cybersecurity and cybersecurity for AI; the debate on the role that AI could play in the dynamics between cyber attackers and defenders; the increasing need for sharing information on threats and how to deal with the vulnerabilities of AI-enabled systems; options for policy experimentation; and possible EU policy measures to ease the adoption of AI in cybersecurity in Europe. As part of such activities, this report aims at assessing the High-Level Expert Group (HLEG) on AI Ethics Guidelines for Trustworthy AI, presented on April 8, 2019. In particular, this report analyses and makes suggestions on the Trustworthy AI Assessment List (Pilot version), a non-exhaustive list aimed at helping the public and the private sector in operationalising Trustworthy AI. The list is composed of 131 items that are supposed to guide AI designers and developers throughout the process of design, development, and deployment of AI, although not intended as guidance to ensure compliance with the applicable laws. The list is in its piloting phase and is currently undergoing a revision that will be finalised in early 2020. This report would like to contribute to this revision by addressing in particular the interplay between AI and cybersecurity. This evaluation has been made according to specific criteria: whether and how the items of the Assessment List refer to existing legislation (e.g. GDPR, EU Charter of Fundamental Rights); whether they refer to moral principles (but not laws); whether they consider that AI attacks are fundamentally different from traditional cyberattacks; whether they are compatible with different risk levels; whether they are flexible enough in terms of clear/easy measurement, implementation by AI developers and SMEs; and overall, whether they are likely to create obstacles for the industry. The HLEG is a diverse group, with more than 50 members representing different stakeholders, such as think tanks, academia, EU Agencies, civil society, and industry, who were given the difficult task of producing a simple checklist for a complex issue. The public engagement exercise looks successful overall in that more than 450 stakeholders have signed in and are contributing to the process. The next sections of this report present the items listed by the HLEG followed by the analysis and suggestions raised by the Task Force (see list of the members of the Task Force in Annex 1)

    POTs: Protective Optimization Technologies

    Full text link
    Algorithmic fairness aims to address the economic, moral, social, and political impact that digital systems have on populations through solutions that can be applied by service providers. Fairness frameworks do so, in part, by mapping these problems to a narrow definition and assuming the service providers can be trusted to deploy countermeasures. Not surprisingly, these decisions limit fairness frameworks' ability to capture a variety of harms caused by systems. We characterize fairness limitations using concepts from requirements engineering and from social sciences. We show that the focus on algorithms' inputs and outputs misses harms that arise from systems interacting with the world; that the focus on bias and discrimination omits broader harms on populations and their environments; and that relying on service providers excludes scenarios where they are not cooperative or intentionally adversarial. We propose Protective Optimization Technologies (POTs). POTs provide means for affected parties to address the negative impacts of systems in the environment, expanding avenues for political contestation. POTs intervene from outside the system, do not require service providers to cooperate, and can serve to correct, shift, or expose harms that systems impose on populations and their environments. We illustrate the potential and limitations of POTs in two case studies: countering road congestion caused by traffic-beating applications, and recalibrating credit scoring for loan applicants.Comment: Appears in Conference on Fairness, Accountability, and Transparency (FAT* 2020). Bogdan Kulynych and Rebekah Overdorf contributed equally to this work. Version v1/v2 by Seda G\"urses, Rebekah Overdorf, and Ero Balsa was presented at HotPETS 2018 and at PiMLAI 201

    Artificial intelligence and UK national security: Policy considerations

    Get PDF
    RUSI was commissioned by GCHQ to conduct an independent research study into the use of artificial intelligence (AI) for national security purposes. The aim of this project is to establish an independent evidence base to inform future policy development regarding national security uses of AI. The findings are based on in-depth consultation with stakeholders from across the UK national security community, law enforcement agencies, private sector companies, academic and legal experts, and civil society representatives. This was complemented by a targeted review of existing literature on the topic of AI and national security. The research has found that AI offers numerous opportunities for the UK national security community to improve efficiency and effectiveness of existing processes. AI methods can rapidly derive insights from large, disparate datasets and identify connections that would otherwise go unnoticed by human operators. However, in the context of national security and the powers given to UK intelligence agencies, use of AI could give rise to additional privacy and human rights considerations which would need to be assessed within the existing legal and regulatory framework. For this reason, enhanced policy and guidance is needed to ensure the privacy and human rights implications of national security uses of AI are reviewed on an ongoing basis as new analysis methods are applied to data

    Achilles Heels for AGI/ASI via Decision Theoretic Adversaries

    Full text link
    As progress in AI continues to advance, it is crucial to know how advanced systems will make choices and in what ways they may fail. Machines can already outsmart humans in some domains, and understanding how to safely build ones which may have capabilities at or above the human level is of particular concern. One might suspect that artificially generally intelligent (AGI) and artificially superintelligent (ASI) systems should be modeled as as something which humans, by definition, can't reliably outsmart. As a challenge to this assumption, this paper presents the Achilles Heel hypothesis which states that even a potentially superintelligent system may nonetheless have stable decision-theoretic delusions which cause them to make obviously irrational decisions in adversarial settings. In a survey of relevant dilemmas and paradoxes from the decision theory literature, a number of these potential Achilles Heels are discussed in context of this hypothesis. Several novel contributions are made toward understanding the ways in which these weaknesses might be implanted into a system.Comment: Contact info for author at stephencasper.co
    • …
    corecore