1,304 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Scalable Hybrid MAC Protocol for Massive M2M Networks

    Full text link
    In Machine to Machine (M2M) networks, a robust Medium Access Control (MAC) protocol is crucial to enable numerous machine-type devices to concurrently access the channel. Most literatures focus on developing simplex (reservation or contention based)MAC protocols which cannot provide a scalable solution for M2M networks with large number of devices. In this paper, a frame-based Hybrid MAC scheme, which consists of a contention period and a transmission period, is proposed for M2M networks. In the proposed scheme, the devices firstly contend the transmission opportunities during the contention period, only the successful devices will be assigned a time slot for transmission during the transmission period. To balance the tradeoff between the contention and transmission period in each frame, an optimization problem is formulated to maximize the system throughput by finding the optimal contending probability during contention period and optimal number of devices that can transmit during transmission period. A practical hybrid MAC protocol is designed to implement the proposed scheme. The analytical and simulation results demonstrate the effectiveness of the proposed Hybrid MAC protocol

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Probabilistic Rateless Multiple Access for Machine-to-Machine Communication

    Get PDF
    Future machine to machine (M2M) communications need to support a massive number of devices communicating with each other with little or no human intervention. Random access techniques were originally proposed to enable M2M multiple access, but suffer from severe congestion and access delay in an M2M system with a large number of devices. In this paper, we propose a novel multiple access scheme for M2M communications based on the capacity-approaching analog fountain code to efficiently minimize the access delay and satisfy the delay requirement for each device. This is achieved by allowing M2M devices to transmit at the same time on the same channel in an optimal probabilistic manner based on their individual delay requirements. Simulation results show that the proposed scheme achieves a near optimal rate performance and at the same time guarantees the delay requirements of the devices. We further propose a simple random access strategy and characterized the required overhead. Simulation results show the proposed approach significantly outperforms the existing random access schemes currently used in long term evolution advanced (LTE-A) standard in terms of the access delay.Comment: Accepted to Publish in IEEE Transactions on Wireless Communication
    • …
    corecore