34,975 research outputs found

    Hydra: A Parallel Adaptive Grid Code

    Full text link
    We describe the first parallel implementation of an adaptive particle-particle, particle-mesh code with smoothed particle hydrodynamics. Parallelisation of the serial code, ``Hydra'', is achieved by using CRAFT, a Cray proprietary language which allows rapid implementation of a serial code on a parallel machine by allowing global addressing of distributed memory. The collisionless variant of the code has already completed several 16.8 million particle cosmological simulations on a 128 processor Cray T3D whilst the full hydrodynamic code has completed several 4.2 million particle combined gas and dark matter runs. The efficiency of the code now allows parameter-space explorations to be performed routinely using 64364^3 particles of each species. A complete run including gas cooling, from high redshift to the present epoch requires approximately 10 hours on 64 processors. In this paper we present implementation details and results of the performance and scalability of the CRAFT version of Hydra under varying degrees of particle clustering.Comment: 23 pages, LaTex plus encapsulated figure

    Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes

    Full text link
    Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In particular, modeling biological systems in the context of multiscale simulations and exploring material properties are driving a permanent development of new simulation methods and optimization algorithms. In computational terms, those methods require parallelization schemes that make a productive use of computational resources for each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach which is a combination of an heterogeneity sensitive spatial domain decomposition with an \textit{a priori} rearrangement of subdomain-walls. Within this approach, the theoretical modeling and scaling-laws for the force computation time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic load balancing schemes. Specifically, two representative molecular systems have been simulated and compared to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive resolution simulation of a biomolecule solvated in water and a phase separated binary Lennard-Jones fluid.Comment: 14 pages, 12 figure
    • …
    corecore