1,340 research outputs found

    Joint Adaptive Modulation-Coding and Cooperative ARQ for Wireless Relay Networks

    Full text link
    This paper presents a cross-layer approach to jointly design adaptive modulation and coding (AMC) at the physical layer and cooperative truncated automatic repeat request (ARQ) protocol at the data link layer. We first derive an exact closed form expression for the spectral efficiency of the proposed joint AMC-cooperative ARQ scheme. Aiming at maximizing this system performance measure, we then optimize an AMC scheme which directly satisfies a prescribed packet loss rate constraint at the data-link layer. The results indicate that utilizing cooperative ARQ as a retransmission strategy, noticeably enhances the spectral efficiency compared with the system that employs AMC alone at the physical layer. Moreover, the proposed adaptive rate cooperative ARQ scheme outperforms the fixed rate counterpart when the transmission modes at the source and relay are chosen based on the channel statistics. This in turn quantifies the possible gain achieved by joint design of AMC and ARQ in wireless relay networks.Comment: 5 pages, 4 figures, To appear in the Proceedings of the 2008 IEEE International Symposium on Wireless Communication Systems (ISWCS), Rykevick, Island, Oct 200

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 10−3{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    Using Channel Output Feedback to Increase Throughput in Hybrid-ARQ

    Full text link
    Hybrid-ARQ protocols have become common in many packet transmission systems due to their incorporation in various standards. Hybrid-ARQ combines the normal automatic repeat request (ARQ) method with error correction codes to increase reliability and throughput. In this paper, we look at improving upon this performance using feedback information from the receiver, in particular, using a powerful forward error correction (FEC) code in conjunction with a proposed linear feedback code for the Rayleigh block fading channels. The new hybrid-ARQ scheme is initially developed for full received packet feedback in a point-to-point link. It is then extended to various different multiple-antenna scenarios (MISO/MIMO) with varying amounts of packet feedback information. Simulations illustrate gains in throughput.Comment: 30 page

    General Model for Infrastructure Multi-channel Wireless LANs

    Full text link
    In this paper we develop an integrated model for request mechanism and data transmission in multi-channel wireless local area networks. We calculated the performance parameters for single and multi-channel wireless networks when the channel is noisy. The proposed model is general it can be applied to different wireless networks such as IEEE802.11x, IEEE802.16, CDMA operated networks and Hiperlan\2.Comment: 11 Pages, IJCN

    Tiny Codes for Guaranteeable Delay

    Full text link
    Future 5G systems will need to support ultra-reliable low-latency communications scenarios. From a latency-reliability viewpoint, it is inefficient to rely on average utility-based system design. Therefore, we introduce the notion of guaranteeable delay which is the average delay plus three standard deviations of the mean. We investigate the trade-off between guaranteeable delay and throughput for point-to-point wireless erasure links with unreliable and delayed feedback, by bringing together signal flow techniques to the area of coding. We use tiny codes, i.e. sliding window by coding with just 2 packets, and design three variations of selective-repeat ARQ protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii) Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting the performance of these protocols with uncoded ARQ, we demonstrate that HARQ performs only slightly better, cumulative feedback-based ARQ does not provide significant throughput while it has better average delay, and Coded ARQ can provide gains up to about 40% in terms of throughput. Coded ARQ also provides delay guarantees, and is robust to various challenges such as imperfect and delayed feedback, burst erasures, and round-trip time fluctuations. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network
    • 

    corecore