218,038 research outputs found

    A novel hybrid 3D endoscope zooming and repositioning system : design and feasibility study

    Get PDF
    Background: Manipulation of the endoscope during minimally invasive surgery is a major source of inconvenience and discomfort. This report elucidates the architecture of a novel one-hand controlled endoscope positioning device and presents a practicability evaluation. Methods and materials: Setup time and total surgery time, number and duration of the manipulations, side effects of three-dimensional (3D) imaging, and ergonomic complaints were assessed by three surgeons during cadaveric and in vivo porcine trials. Results: Setup was accomplished in an average (SD) of 230 (120) seconds. The manipulation time was 3.87 (1.77) seconds for angular movements and 0.83 (0.24) seconds for zooming, with an average (SD) of 30.5 (16.3) manipulations per procedure. No side effects of 3D imaging or ergonomic complaints were reported. Conclusions: The integration of an active zoom into a passive endoscope holder delivers a convenient synergy between a human and a machine-controlled holding device. It is shown to be safe, simple, and intuitive to use and allows unrestrained autonomic control of the endoscope by the surgeon

    The technology of Incremental Sheet Forming - a brief review of the history

    Get PDF
    This paper describes the history of Incremental Sheet Forming (ISF) focusing on technological developments. These developments are in general protected by patents, so the paper can also be regarded as an overview of ISF patents in addition to a description of the early history. That history starts with the early work by Mason in 1978 and continues up to the present day. An extensive list of patents including Japanese patents is provided.\ud \ud The overall conclusion is that ISF has received the attention of the world, in particular of the automotive industry, and that most proposed or suspected applications focus on the flexibility offered by the process. Only one patent has been found that is explicitly related to the enhancement of formability. Furthermore, most patents refer to TPIF (Two-Point Incremental Forming) as a process.\ud \ud Besides simply presenting a historical overview the paper can act as an inspiration for the researcher, and present a rough idea of the patentability of new developments

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge

    Towards human technology symbiosis in the haptic mode

    Get PDF
    Search and rescue operations are often undertaken in dark and noisy environments in which rescue teams must rely on haptic feedback for exploration and safe exit. However, little attention has been paid specifically to haptic sensitivity in such contexts or to the possibility of enhancing communicational proficiency in the haptic mode as a life-preserving measure. Here we discuss the design of a haptic guide robot, inspired by careful study of the communication between blind person and guide dog. In the case of this partnership, the development of a symbiotic relationship between person and dog, based on mutual trust and confidence, is a prerequisite for successful task performance. We argue that a human-technology symbiosis is equally necessary and possible in the case of the robot guide. But this is dependent on the robot becoming 'transparent technology' in Andy Clark's sense. We report on initial haptic mode experiments in which a person uses a simple mobile mechanical device (a metal disk fixed with a rigid handle) to explore the immediate environment. These experiments demonstrate the extreme sensitivity and trainability of haptic communication and the speed with which users develop and refine their haptic proficiencies in using the device, permitting reliable and accurate discrimination between objects of different weights. We argue that such trials show the transformation of the mobile device into a transparent information appliance and the beginnings of the development of a symbiotic relationship between device and human user. We discuss how these initial explorations may shed light on the more general question of how a human mind, on being exposed to an unknown environment, may enter into collaboration with an external information source in order to learn about, and navigate, that environment

    Haptic Experience and the Design of Drawing Interfaces

    Get PDF
    Haptic feedback has the potential to enhance users’ sense of being engaged and creative in their artwork. Current work on providing haptic feedback in computer-based drawing applications has focused mainly on the realism of the haptic sensation rather than the users’ experience of that sensation in the context of their creative work. We present a study that focuses on user experience of three haptic drawing interfaces. These interfaces were based on two different haptic metaphors, one of which mimicked familiar drawing tools (such as pen, pencil or crayon on smooth or rough paper) and the other of which drew on abstract descriptors of haptic experience (roughness, stickiness, scratchiness and smoothness). It was found that users valued having control over the haptic sensation; that each metaphor was preferred by approximately half of the participants; and that the real world metaphor interface was considered more helpful than the abstract one, whereas the abstract interface was considered to better support creativity. This suggests that future interfaces for artistic work should have user-modifiable interaction styles for controlling the haptic sensation
    • 

    corecore