987 research outputs found

    Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization

    Full text link
    In this paper we combine concepts from Riemannian Optimization and the theory of Sobolev gradients to derive a new conjugate gradient method for direct minimization of the Gross-Pitaevskii energy functional with rotation. The conservation of the number of particles constrains the minimizers to lie on a manifold corresponding to the unit L2L^2 norm. The idea developed here is to transform the original constrained optimization problem to an unconstrained problem on this (spherical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent definition of an H1H^1 inner product which takes into account rotation. Then, the Riemannian gradient (RG) steepest descent method is derived based on projected gradients and retraction of an intermediate solution back to the constraint manifold. Finally, we use the concept of the Riemannian vector transport to propose a Riemannian conjugate gradient (RCG) method for this problem. It is derived at the continuous level based on the "optimize-then-discretize" paradigm instead of the usual "discretize-then-optimize" approach, as this ensures robustness of the method when adaptive mesh refinement is performed in computations. We evaluate various design choices inherent in the formulation of the method and conclude with recommendations concerning selection of the best options. Numerical tests demonstrate that the proposed RCG method outperforms the simple gradient descent (RG) method in terms of rate of convergence. While on simple problems a Newton-type method implemented in the {\tt Ipopt} library exhibits a faster convergence than the (RCG) approach, the two methods perform similarly on more complex problems requiring the use of mesh adaptation. At the same time the (RCG) approach has far fewer tunable parameters.Comment: 28 pages, 13 figure

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Primal-dual accelerated gradient methods with small-dimensional relaxation oracle

    Full text link
    In this paper, a new variant of accelerated gradient descent is proposed. The pro-posed method does not require any information about the objective function, usesexact line search for the practical accelerations of convergence, converges accordingto the well-known lower bounds for both convex and non-convex objective functions,possesses primal-dual properties and can be applied in the non-euclidian set-up. Asfar as we know this is the rst such method possessing all of the above properties atthe same time. We also present a universal version of the method which is applicableto non-smooth problems. We demonstrate how in practice one can efficiently use thecombination of line-search and primal-duality by considering a convex optimizationproblem with a simple structure (for example, linearly constrained)
    corecore