73,987 research outputs found

    On the commutativity of the powerspace constructions

    Full text link
    We investigate powerspace constructions on topological spaces, with a particular focus on the category of quasi-Polish spaces. We show that the upper and lower powerspaces commute on all quasi-Polish spaces, and show more generally that this commutativity is equivalent to the topological property of consonance. We then investigate powerspace constructions on the open set lattices of quasi-Polish spaces, and provide a complete characterization of how the upper and lower powerspaces distribute over the open set lattice construction

    The connected Vietoris powerlocale

    Get PDF
    The connected Vietoris powerlocale is defined as a strong monad Vc on the category of locales. VcX is a sublocale of Johnstone's Vietoris powerlocale VX, a localic analogue of the Vietoris hyperspace, and its points correspond to the weakly semifitted sublocales of X that are “strongly connected”. A product map ×:VcX×VcY→Vc(X×Y) shows that the product of two strongly connected sublocales is strongly connected. If X is locally connected then VcX is overt. For the localic completion of a generalized metric space Y, the points of are certain Cauchy filters of formal balls for the finite power set with respect to a Vietoris metric. \ud Application to the point-free real line gives a choice-free constructive version of the Intermediate Value Theorem and Rolle's Theorem. \ud \ud The work is topos-valid (assuming natural numbers object). Vc is a geometric constructio

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic
    • 

    corecore