2,421 research outputs found

    Faster polynomial multiplication over finite fields

    Full text link
    Let p be a prime, and let M_p(n) denote the bit complexity of multiplying two polynomials in F_p[X] of degree less than n. For n large compared to p, we establish the bound M_p(n) = O(n log n 8^(log^* n) log p), where log^* is the iterated logarithm. This is the first known F\"urer-type complexity bound for F_p[X], and improves on the previously best known bound M_p(n) = O(n log n log log n log p)

    Computing Puiseux series : a fast divide and conquer algorithm

    Get PDF
    Let F∈K[X,Y]F\in \mathbb{K}[X, Y ] be a polynomial of total degree DD defined over a perfect field K\mathbb{K} of characteristic zero or greater than DD. Assuming FF separable with respect to YY , we provide an algorithm that computes the singular parts of all Puiseux series of FF above X=0X = 0 in less than O~(Dδ)\tilde{\mathcal{O}}(D\delta) operations in K\mathbb{K}, where δ\delta is the valuation of the resultant of FF and its partial derivative with respect to YY. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of FF in K[[X]][Y]\mathbb{K}[[X]][Y ] up to an arbitrary precision XNX^N with O~(D(δ+N))\tilde{\mathcal{O}}(D(\delta + N )) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by FF with O~(D3)\tilde{\mathcal{O}}(D^3) arithmetic operations and, if K=Q\mathbb{K} = \mathbb{Q}, with O~((h+1)D3)\tilde{\mathcal{O}}((h+1)D^3) bit operations using a probabilistic algorithm, where hh is the logarithmic heigth of FF.Comment: 27 pages, 2 figure
    • …
    corecore